महाराष्ट्र राजपतिम लांतिक सेवा ८ मुख्य) स्पर्धा परीक्षा - 2021 यांत्रिकी अभेयांतिकी मुख्य परीक्षा

प्रश्नपुस्तिका क्रमांक BOOKLET No. परीक्षादि. 1 आकोबर, 2022

201633

प्रश्नपुस्तिका – 11

C16

संच क्र.

एकूण प्रश्न : 100 एकूण गुण : 200

यांत्रिकी अभियांत्रिकी पेपर - 2

वेळ: 2 (दोन) तास

सूचना

- (1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.
- (2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकिरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नथे.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालिता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही. एकापेक्षा जास्त उत्तरे नमूद केल्यास ते उत्तर चुकीचे धरले जाईल व त्या चुकीच्या उत्तराचे गुण वजा केले जातील.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चुकीच्या उत्तरांसाठी 25% किंवा 1/4 गुण वजा करण्यात येतील''.

ताकीढ

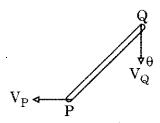
ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82" यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

ज्या सूचनेविना हे सील उघडू

पर्यंवे क्षकां


1000 - १५३: टेम दिवाद १००६ मातान महिलाह हारामा । भारतिक अध्यान मिलाह स्थापन

C16

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

1.		number of o ple hinge joint		of freedom in	a pla	nar mechanis	sm havi	ng n links	and j
•	(1)	3(n-3)-2j		·	(2)	3(n-1)-2j		•	
	(3)	_	,			2j - 3n + 4			
2.	A C	am and Follov	ver is a	n example of					
	(1)	Lower pair	(2)	Higher pair	(3)	Rolling pair	(4)	Spherical	pair
3.	At a	any instant, th	e Mech	anical Advant	age (M	A) is the ratio	of the		
	(1)	input torquoutput torqu			(2)	input force	-		
	(3)	output force	-		(4)	None of the	above		
4.	Wh	ich of the follo	wing is	an inversion o	f doubl	e slider crank	chain ?		
	(1)	Whitworth o	juick re	turn mechanis	sm				
	(2)	Double cran	k mecha	nism					
	(3)	Pendulum p	ump						
	(4)	Oldham's co	upling						
5.	The	transmission	angle is	s maximum w	hen the	crank angle v	vith the	fixed link i	s
	(1)	270°	(2)	180°	(3)	135°	(4)	225°	
6.	In a	sliding motio	n, insta	ntaneous cent	re lies a	at			
	(1)	pivoted joint	;		(2)	point of cont	act at tl	he given ins	tant
	(3)	infinity			(4)	None of the	above		
7.	dist	a link AB, wh ance of 10 cm elative to 'A' is	with re	otating with 12 spect to anothe m/s.	20 rpm er point	and point 'B' o	on the li	ink is locate r velocity of	d at a point
	(1)	4 π	(2)	2 π	(3)	0·4 π	(4)	40 π	
8.	In conf	Klein's const	ruction,	acceleration	diagr	am of slider	crank	mechanis	m on
	(1)	triangle			(2)	square			
	(3)	rectangle			(4)	quadrilatera	1 .		
कच्च	ा कामार	गठी जागा / SPA	CE FOR	ROUGH WORK				F	P.T.O.

9. A rigid link PQ is undergoing plane motion as shown in the figure (V_P and V_Q are non-zero). V_{QP} is the relative of point Q with respect to point P. Which one of the following is True?

- (1) V_{QP} has components along and perpendicular to PQ.
- (2) V_{QP} has only one component directed from P to Q.
- (3) V_{QP} has only one component directed from Q to P.
- (4) V_{QP} has only one component perpendicular to PQ.
- 10. Which gear tooth system has shorter addendum and dedendum?
 - (1) 14.5 degree full depth
- (2) 20 degree full depth

(3) 25 degree full depth

- (4) 20 degree stub
- 11. For a critically damped system, motion is
 - (1) Non-oscillatory

(2) Exponentially decreasing

(3) Oscillatory

- (4) Aperiodic
- 12. The locus of a point on the circumference of circle that rolls without slipping inside the circumference of another circle is
 - (1) involute

(2) cycloid

(3) epicycloid

- (4) hypocycloid
- 13. Angular acceleration of a link AB is given by
 - (1) Centripetal acceleration Length AB
- $(2) \quad \frac{\text{Tangential acceleration}}{\text{Length AB}}$

 $(3) \quad \frac{\text{Total acceleration}}{\text{Length AB}}$

(4) $\frac{(\text{Tangential velocity of Point B})^2}{\text{Length AB}}$

14.	The ratio of the difference between the maximum and minimum angular velocities of
	the crankshaft to its mean angular velocity is

- (1) Coefficient of steadiness
- (2) Coefficient of fluctuations of speed
- (3) Coefficient of fluctuations of energy
- (4) None of the above

15. The most suitable follower motion programme for high-speed follower motion is

- (1) uniform acceleration and deceleration
- (2) simple harmonic motion
- (3) uniform velocity
- (4) cycloidal

16. In balancing of several masses revolving in different planes

- (1) resultant couple must be zero
- (2) resultant force must be zero
- (3) resultant force and couple must be zero
- (4) None of the above

17. Determine gyroscopic couple effect on an aeroplane when engine rotates clockwise viewed from front and it takes left turn.

- (1) Depress nose and raise tail
- (2) Depress tail and raise nose
- (3) No gyroscopic effect
- (4) None of the above

18. The ratio of tight and slack side tensions in a V-belt or rope is

- (1) $e^{\mu\theta} \sin \alpha$
- (2) $e^{\mu\theta}\cos\alpha$
- (3) $e^{\mu\theta}/\cos\alpha$
- (4) $e^{\mu\theta}/\sin\alpha$

19. In a gear train, the train value is given by _____

Let,

 $T_1 = Number of teeth on driving gear$

 $T_n = Number$ of teeth on driven gear

 $(1) \quad \frac{T_1}{T_n}$

 $(2) \quad \frac{T_n}{T_1}$

(3) $T_1 \times T_n$

 $(4) \quad T_n - T_1$

20. When two springs having stiffness \mathbf{k}_1 and \mathbf{k}_2 are connected in parallel, then equivalent stiffness is

(1) $k_1 + k_2$

(2) $k_1 - k_2$

 $(3) \quad \frac{1}{k_1} + \frac{1}{k_2}$

 $(4) \quad \frac{1}{k_1} - \frac{1}{k_2}$

21. Large guns have dashpot with _____

(1) under damping

(2) critical damping

(3) over damping

(4) None of the above

22. In a spring mass system, if the mass is halved and spring stiffness is doubled, the natural frequency is

(1) halved

(2) doubled

(3) unchanged

(4) quadrupled

23. When the frictional force helps the applied force in applying the brake, the brake is

(1) self-locking

(2) automatic

(3) self-energising

(4) None of the above

24. The amplitude of circular whirl at low speeds is determined by

- (1) mass
- (2) damping
- (3) spring constant
- (4) None of the above

25. The included angle for the 'V-Belt' is usually

- $60^{\circ} 80^{\circ}$ **(1)**
- (2) $40^{\circ} - 60^{\circ}$
- $30^{\circ}-40^{\circ}$ (3)
- **(4)** $20^{\circ} - 30^{\circ}$

In a close coiled Helical spring, the spring index is given by D/d where D = mean coil 26. diameter and d = wire diameter. For considering the effect of curvature, the Wahl's factor 'k' is given by

 $\frac{4C-1}{4C-4} + \frac{0.615}{C}$

 $(2) \quad \frac{4C-1}{4C+4} + \frac{0.615}{C}$

(3)

(4) $\frac{4C+1}{4C+4} - \frac{0.615}{C}$

What is/are the objectives of spring in series and parallel combinations? 27.

- To save the space
- (2)To provide a fail-safe system
- To change the rate of the spring at a certain deflection (3)
- **(4)** All of the above

Check the following statements related to factor of safety: 28.

Factor of safety is the ratio of failure stress to allowable stress. Statement I:

Statement II: Factor of safety is the ratio of failure load to working load.

Select the correct answer from the following:

Answer options:

- **(1)** Only statement I is correct.
- (2)Only statement II is correct.
- (3)Both statements are correct.
- **(4)** Both statements are wrong.

In a flat belt drive the belt can be subjected to maximum tension (T) and centrifugal 29. tension ($T_{\rm C}$). The condition for transmission of maximum power is given by _

- **(1)** $T = 2 T_C$
- (2) $T = 3 T_C$
- (3) $T = \sqrt{3} T_C$ (4) $T = T_C$

The rate of helical compression spring (k) is given by _ 30.

If d = Wire diameter of spring

D = Mean coil diameter

G = Modulus of rigidity

N = Number of active coils

- $(1) \quad k = \frac{Gd^4}{8D^3N} \qquad (2) \quad k = \frac{GD^3}{8d^4N} \qquad (3) \quad k = \frac{D^3N}{8Gd^4} \qquad (4) \quad k = \frac{8Gd^4}{D^3N}$

31. The solid circular shaft is subjected to bending moment (M) and twisting moment (T). If the maximum bending stress is equal to maximum shear stress developed, then the bending moment (M) is equal to

(1) T

C16

(2) T/2

 $(3) \quad 2T$

(4) 4T

32. If a shaft is subjected to combined bending moment (M_b) and twisting moment (M_t) , then the equivalent twisting moment is given by

 $(1) \quad \sqrt{M_b^2 + M_t^2}$

(2) $M_b^2 + M_t^2$

(3) $\sqrt{M_b + M_t}$

(4) $M_b + \sqrt{M_b^2 + M_t^2}$

33. In ductile material, the magnitude of stresses are

(1) Ultimate = Yield = Elastic limit

(2) Ultimate > Yield > Elastic limit

(3) Ultimate > Yield = Elastic limit

(4) Ultimate < Yield < Elastic limit

34. Stress concentration factor is the ratio of

(1) Lowest value of actual stress near discontinuity to Nominal stress obtained by elementary equations for minimum cross-section.

(2) Highest value of actual stress near discontinuity to Nominal stress obtained by elementary equations for minimum cross-section.

(3) Nominal stress obtained by elementary equations for minimum cross-section to lowest value of actual stress near discontinuity.

(4) None of the above

35. The ratio of endurance limit of the notch-free specimen to endurance limits of the notched specimen is called

(1) Notch Sensitivity Factor (q)

(2) Theoretical Stress Concentration Factor (k_t)

(3) Fatigue Stress Concentration Factor (k_F)

(4) Endurance Factor (E)

36.	A co	ottor joint is	s used to	connect two 1	rods whic	ch are subj	ected to	•
	(1)	Tension			(2)	Compre	ssion	
	(3)	Tension a	nd compi	ession	(4)	None of	the above	
37.	Am	achine con	nponent i	s subjected t	o fluctua	ting stres	s that varies	from 50 to 100.
	The stre	corrected ngth of ma	enduran	ce stress lin	nit for r	nachine c	omponent is	250. The yield using Soderberg
	line	?					,	-
	(1)	5			(2)	4		
	(3)	3			(4)	2		
38.	In n	naximum sl	near stres	s theory, ma	ximum s	hear stress	s is equal to	
	(1)	allowable	stress in	tension	(2)	allowabl	e stress in co	mpression
	(3)	allowable	stress in	shear	(4)		the above	•
39.	The	Maximum	normal st	cress theory i	s used fo	r		
	(1)	Ductile ma		·	(2)	Brittle n	naterial	
	(3)	Plastic ma	iterial		(4)		ous material	
40.	Max	imum princ	cipal stra	in theory is a	lso called	 l as		
	(1)	Guest's the			(2)		nt's theory	
	(3)	Haigh's th	eory		(4)	Coulomb	•	
41.	In ca	se of helica	l compres	ssion spring,	find mea	n coil dian	neter (D) if	
		= Wire dian					acter (B) II	
				spring coil				
				of spring coil	L		·	
	(1)	$\frac{D_o-D_i}{2}$	(2)	$\frac{D_0^{} + D_i^{}}{2}$	(3)	$\frac{D_o}{2}$	(4) <u>I</u>	$\frac{D_i}{2}$
2.	Extru	sion proces	s is an ex	cample of wh	ich type	of manufac	cturing proces	
	(1)	Casting pro	ocess	. •	(2)		ion process	, co.
	(3)	Material re	moval pr	ocess	(4)	None of the	_	
च्च्या	कामासार	ठी जागा / SP	ACE FOR	ROUGH WOR	K			P.T.O.

43.	The	phase forme	ed above	the eutecto	id tempe	rature for	carbon st	eels is known as
	(1)	pearlite	(2)	austenite	(3)	ferrite	(4)	cementite
44.	Inco	nel is an allo	y of	 -				•
	(1)	Nickel, chro	mium a	nd iron	(2)	Nickel an	d copper	
	(3)	Nickel and	tin		(4)	Nickel an	d zinc	
45.	The	process of a	chieving	g interparticl	e bonding	g of powd	ers in a c	onsolidated green
	body	y is known as		*		_		
	(1)	pressing			(2)	stress rel		
	(3)	sintering			(4)	compacti	on 	
46.	Stra	ain hardening	; is relat	ed to			_	
	(1)	plastic defor	rming		(2)		in strengtl	ו
ı	(3)	cold workin	g		(4)	All of the	above	
<u></u> 47.	The	correct seque	ence of e	elements of 18	8-4-1 HSS	S tool is		
	(1)	W, Cr, V			(2)	Mo, Cr, V	7	
	(3)	Cr, Ni, C		· 	(4)	Cu, Zn, S	Sn 	
48.	Pea	rlite is a mix	ture of _					
	(1)	ferrite and			(2)	-	e and ceme	
	(3)	cementite a	ınd lede	burite	(4)	ledeburit	e and ferr	ite
 49.	If c	arbon present	t in cast	iron is mostl	y in the f	ree state, i	it is knowr	ı as
70.	(1)	white cast			(2)	grey cast	iron	
	(3)	molten cast			(4)	None of	the above	-
50.	The	non-equilib	rium p	hases of Fe-	Fe ₃ C sy	stem are	shown fo	r their time and
		nsformation o						
	(1)	Fe-Fe ₃ C di	agram		(2)	TTT diag	gram	
	(3)	CCT diagra	am		(4)	CCT and	TTT diag	ram
51.	Fat	tigue life of a	compon	ent can be in	creased b	у	·	
02.	(1)	introducing	g surfac	e roughness	(2)	introduc	ing compr	essive stresses
	(3)				(4)	introduc	ing shear	stresses
<u></u> -	Th	e bright or w	hite app	earance of wl	nite cast i	ron is due	to the pre	sence of
_ 	(1)	_	(2)			martens	site (4)	pearlite
		ासाठी जागा <i>।</i> SF	PACE FO	R ROUGH WO	RK			

53.	Of	the following processes, which one is	is noted	for highest material removal rates?
	(1)	Electric discharge machining		
	(2)	Electro chemical machining		
	(3)	Electric discharge grinding		
	(4)	Plasma arc cutting		
54.	Ma	ajority of the oxy-acetylene welding i	s done	with
	(1)		(2)	reducing flame
	(3)	oxidising flame	(4)	None of the above
55.	Th	e time period used for planning pur	oses ir	n MRP (usually a week) is known as
	(1)	time bucket	(2)	time phasing
	(3)	MRP time	(4)	None of the above
56.	In	thermit welding, heat is generated _		
	(1)	from the combustion of gas		<u> </u>
	(2)	by an arc		
	(3)	by chemical reaction between alur	ninum	and iron oxide
	(4)	None of the above		
57.	Wh	ich one of the following cutting tool	materi:	als have higher hardness 2
	(1)	Alloy steel	(2)	HSS
	(3)	Tungsten carbide	(4)	Diamond
58.	Bla	nking and punching operations can	be perfe	ormed simultaneously on
	(1)	combination die	(2)	compound die
	(3)	progressive die	(4)	simple die
59.	The mad	strength of brazed joint is typically	<i>I</i>	the filler metal out of which it is
	(1)	equal to		
	(2)	stronger than		
	(3)	weaker than		
	(4)	None of the above		
- ज्ञ्या	कामास	ाठी जागा / SPACE FOR BOUGH WORK	<u> </u>	

C16

60.			11 a 10ta (2)	ting single point tool is called Drilling
	(1)	Boring	(4)	Internal turning
	(3)	Reaming	(4)	
61.	Whi	ch of the following stress or stren	gth par	ameters is used in the computation of
		ng force ?		
	(1)	Average flow stress		
	(2)	Compression strength		
	(3)	Final flow stress		
	(4)	Tensile strength		
62.	In E	Electro-Chemical Machining (ECM)	, the ma	aterial removal is due to
	(1)	corrosion	(2)	erosion
	(3)	fusion	(4)	metallic ion exchange
	 Tot:	al solidification time is defined as v	which or	ne of the following ?
00.	(1)	Time between pouring and comp		
	(2)	Time between pouring and cooling	g to roo	m temperature
	(3)	Time between solidification and		
	(4)	Time to give up the heat of fusion		-
	(4)	Time to give up the near of terms	<u> </u>	·
64.	 A b	uilt-up-edge is formed while machi	ning	·
	(1)	ductile materials at high speed		
	(2)	ductile materials at low speed		
	(3)	brittle materials at high speed		
	(4)	brittle materials at low speed		
 65.	 Wh	nich of the following operations is/a	re perfo	rmed on a lathe machine?
		Undercutting	(2)	
	(3)	Reaming	(4)	All of the above
66.	Br:	ass and bronze are welded by		
	(1)	- ~	(2)	_
	\ - /	oxidising flame	(4)	None of the above

Δ	

67.	Ch	apping of the tool may occur due to
	a.	tool material being too brittle
	b.	a crack that is already in the tool
	c.	excessive static loading of the tool
	d.	weak design of the tool
	An	swer options:
	(1)	Only a and b
	(2)	Only b and c
	(3)	Only a and c
	(4)	All a, b, c and d
68.	In	a progressive die (sheet metal work), the tonnage of press can be reduced by
	(1)	grinding the cutting edges sharp
	(2)	increasing the hardness of punches
	(3)	increasing the hardness of die
	(4)	staggering the punches
69.	Coi	ning and gear forging are examples of
	(1)	Open die forging
	(2)	Impression die forging
	(3)	Closed die forging
	(4)	Upset forging
70.	The	primary purpose of sprue in the casting mould is to
	(1)	feed the casting at a rate consistent with the rate of solidification
	(2)	act as a reservoir for molten metal
	(3)	feed molten metal from pouring basin to the gate
	(4)	help feed the casting until all solidification takes place
कच्चा	कामास	ठी जागा / SPACE FOR ROUGH WORK
		P.T.O.

~ 4	_
7.7	

1	١	l	

- 71. Sensitivity of a measuring instrument is _____
 - (1) the ratio of the scale spacing to the scale division value.
 - (2) the ratio of range of measurement to scale spacing.
 - (3) the scale division value.
 - (4) None of the above
- 72. Which of the following is correct if the 5° angle block is reversed and combined with the 45° angle block?
 - (1) The resulting angle becomes 40°
 - (2) The resulting angle becomes 50°
 - (3) The resulting angle remains 45°
 - (4) Such a combination is not possible
- 73. In lapping process
 - (1) form tool is used
 - (2) the shape of the lap (tool) is imparted to the component
 - (3) there is an improvement in the surface quality of the part
 - (4) None of the above
- 74. An optical flat can be employed to measure height differences in the range of
 - (1) 0.01 0.1 mm
 - (2) 10-100 mm
 - (3) 1 10 mm
 - (4) 1 10 m

- 75. Which gauge is used only for checking the size and condition of other gauges?
 - (1) Workshop gauge
 - (2) Inspection gauge
 - (3) Purchase inspection gauge
 - (4) Master gauge
- 76. In a hole and shaft pair designation of $60H_7/d_9$, the numbers 7 and 9 indicate
 - (1) accuracy of manufacturer
 - (2) tolerance grades
 - (3) case of assembly
 - (4) nothing of importance
- 77. Two shafts A and B have their diameters specified as 100 ± 0.1 mm and 0.1 ± 0.0001 mm respectively.

Which of the following statements is/are true?

- (1) Tolerance in the dimension is greater in shaft A.
- (2) The relative error in the dimension is greater in shaft A.
- (3) Tolerance in the dimension is greater in shaft B.
- (4) The relative error in the dimension is greater in shaft B.
- 78. A part is said to be at the Maximum Material Condition (MMC) when
 - (1) its dimensions are at the limits that give the component the least amount of material.
 - (2) its dimensions are at the limits that give maximum amount of material in the part.
 - (3) its dimensions are at the zero deviation.
 - (4) None of the above

- 79. A simply supported beam of length 'L' is loaded with distributed load of intensity zero at both ends and 'W' per unit length as center. What is the maximum bending moment in the beam?
 - $(1) \quad \frac{WL^2}{8}$
- $(2) \quad \frac{WL^2}{4}$
- (3) WL²
- $(4) \quad \frac{WL^2}{12}$
- 80. Continuous beam is one which has _____
 - (1) less than two supports
 - (2) two supports only
 - (3) more than two supports.
 - (4) None of the above
- 81. The deflection at the free end of a cantilever of length *l* carrying a point load W at its free end is given as ______.
 - $(1) \frac{Wl}{2EI}$

 $(2) \quad -\frac{Wl^2}{2EI}$

 $(3) \quad -\frac{Wl^3}{2EI}$

- $(4) \frac{Wl^3}{3EI}$
- **82.** A simply supported beam of length 'L' is subjected to uniformly varying load whose intensity varies from zero at left support and maximum at right support. What is the location of zero shear force?
 - (1) $\frac{L}{\sqrt{3}}$ from left support
- (2) $\frac{L}{\sqrt{3}}$ from right support

 $(3) \quad \frac{L}{2}$

- (4) $\frac{\sqrt{3}}{2}L$ from left support
- 83. A cube of side length 'a' is made up of material having Poisson's ratio 0.25. What will be the change in volume of cube under the action of load in only one direction?

Take unit change in the dimension of cube in the direction of load.

(1) $1.5 a^2$

(2) $1.5 a^3$

(3) $0.5 a^2$

(4) $0.5 a^3$

54.	zero at one end to w per unit run at equal to	ng a load v the mid s _l	whose inte pan, the n	ensity vari naximum b	es uniforml ending mon	y fron nent is
	$(1) \frac{Wl^2}{4} \qquad (2) \frac{Wl^2}{8}$	(3)	$\frac{\mathrm{W}l^2}{12}$	(4)	$\frac{\mathrm{W}l^2}{24}$	
85.	A circular shaft of length 'L' is subje in the twisted shaft?	cted to tor	que "T". W]	hat is the t	otal strain (energy
	Take G = Modulus of rigidity				•	
	I_P = Polar moment of inertia					
	$(1) \frac{\mathrm{T}^2\mathrm{L}}{2\mathrm{GI}_\mathrm{P}} \qquad (2) \frac{\mathrm{T}^2\mathrm{L}}{\mathrm{GI}_\mathrm{P}}$	(3)	$rac{\mathrm{TL}}{2\mathrm{GI_P}}$	(4)	$\frac{\mathrm{T^2}}{\mathrm{2GI_{P}L}}$	
86.	Strain energy absorbed due to sudde due to gradual load.	n load is _		the strain	energy abs	orbed
	(1) two times	(2)	equal to			
	(3) half of	(4)	None of th	ne above		•
87.	In thin shell, longitudinal stress (δ_L)	is given hy				
	If p = Internal pressure	<i>3 y</i>		•		
	t = Thickness of cylinder					
	d = Internal diameter of cylinder					
	$(1) \frac{pd}{4t} \qquad \qquad (2) \frac{pd}{8t}$	(3)	<u>pd</u> 12t	(4)	$\frac{\mathrm{pd}}{6\mathrm{t}}$	
38.	If the spherical and cylindrical the same diameters, subjected to same pathickness?	nin vessel pressure, t	s made o	of same r	naterial ar having sm	e of aller
	(1) Spherical			•		
	(2) Cylindrical					
	(3) Both have same thickness					
	(4) None of the above	4 .				

	(1)	son's ratio 0·2 12/5	(2)	5/12	(3)	5/14	(4	4)	14/5	
	Whi	ch of the follow	ving ar	e usually co			inders?			
	(1)	Boilers			(2)	Tanks All of the	ahovo			
	(3)	Steam pipes			(4)	All of the		·		
	The	strain energy	stored	in a simply	supported	d beam of	span 'L'	and	l flexura	rigio
	Eľ.	due to a centra	al conce	entrated loa	ad 'W' is					
	(1)	W^2L^2			(2)	$\frac{\mathrm{W}^2\mathrm{L}^3}{48\mathrm{EI}}$				
	(1)	48 EI								
						വെ				
	(0)	$\mathrm{W}^2\mathrm{L}^3$			(4)	$\frac{\mathbf{W}^{\mathbf{z}}\mathbf{L}^{\mathbf{z}}}{\mathbf{L}^{\mathbf{z}}}$				
	(3)	$\frac{\mathrm{W}^2\mathrm{L}^3}{96\mathrm{EI}}$			(4)	$\frac{\mathrm{W}^2\mathrm{L}^2}{96\mathrm{EI}}$			<u> </u>	
			I bae A				al. Diam	eter	of A is	
2.	Two	solid shafts A	A and I	3 are made	of the san	ne materia	al. Diam	eter	of A is	wice
 }.	Two		A and I e ratio (2)	3 are made of strength	of the san	ne materia	.S	eter (4)	of A is	
2.	Two	o solid shafts A meter of B. The 2	e ratio (2)	of strength 4	of the sam of A to B i	ne materia n torsion i 8	.S			cwice
	Two	o solid shafts A	e ratio (2)	of strength 4	of the sam of A to B i	ne materia n torsion i 8	.S			wice
	Two	o solid shafts A meter of B. The 2	e ratio (2) for circ	of strength 4	of the sam of A to B i	ne materia n torsion i 8	.S			wice
	Two dian (1) Tor	o solid shafts A meter of B. The 2 rsion equation	e ratio (2) for circ	of strength 4	of the sam of A to B i	ne materia n torsion i 8	.S			cwice
	Two dian (1) Tor If τ	o solid shafts Ameter of B. The 2 sion equation = Shear stress	e ratio (2) for circ s chaft	of strength 4 cular shaft i	of the sam of A to B i	ne materia n torsion i 8	.S			wice
	Two dian (1) Tor If τ	o solid shafts Ameter of B. The 2 rsion equation = Shear stress R = Radius of s	e ratio (2) for circ s chaft of twist	of strength 4 cular shaft i	of the sam of A to B i	ne materia n torsion i 8	.S			twice
	Two dian (1) Tor If τ	o solid shafts Ameter of B. The 2 rsion equation = Shear stress R = Radius of s 0 = The angle of C = Modulus of	e ratio (2) for circ s haft of twist f rigidit	of strength 4 cular shaft i	of the sam of A to B i	ne materia n torsion i 8	.S			wice
	Two dian (1) Tor If τ	o solid shafts Ameter of B. The 2 sion equation = Shear stress R = Radius of s 0 = The angle of C = Modulus of E = Length of s	e ratio (2) for circ s haft of twist f rigidit	of strength 4 cular shaft i	of the sam of A to B i (3)	ne materia n torsion i 8	S			cwice
2. 3.	Two dian (1) Tor If τ	o solid shafts Ameter of B. The 2 rsion equation = Shear stress R = Radius of s 0 = The angle of C = Modulus of	e ratio (2) for circ s haft of twist f rigidit	of strength 4 cular shaft i	of the sam of A to B i (3)	ne materia n torsion i 8	Se			wice

Rectangular (1)

Triangular **(2)**

(3) Parabola

Circular **(4)**

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

Α 19 The point of contraflexure is also called 95. the point of inflexion (2)a virtual hinge (3)Either of the above **(4)** None of the above If for a given material 'E' is Young's modulus and 'G' is modulus of rigidity, then 96. what is ratio of E' and G', if Poisson's ratio is 0.35? **(1)** 1.35(2)2.7(3) 2 **(4)** 3.75Modulus of rigidity is defined as the ratio of _ 97. shear stress to shear strain **(1)** linear stress to linear strain (2)linear strain to lateral strain (3)lateral strain to linear strain **(4)** 98. Poisson's ratio is a ratio of Modulus of elasticity and modulus of rigidity **(1)** (2)Stress and strain Lateral strain and linear strain (3)**(4)** None of the above

- A thin cylinderal shell of diameter 'd', wall thickness 't' is subjected to an internal 99. fluid pressure 'P'. If 'E' is Young's modulus and $\frac{1}{m}$ is Poisson's ratio for cylinder material, which of the following expressions give volumetric strain of cylinder?
 - $\frac{\text{Pd}}{2\text{tE}} \left(2.5 \frac{2}{\text{m}} \right)$

 $(2) \quad \frac{Pd}{2tE} \left(5 - \frac{2}{m} \right)$

 $\frac{Pd}{3tE}\bigg(5-\frac{2}{m}\bigg)$

- $(4) \quad \frac{Pd}{3tE}\bigg(2\cdot 5 \frac{2}{m}\bigg)$
- The slope and deflection at a section in a loaded beam can be found out by which of 100. **(1)**
 - **Double Integration Method**
 - Moment Area Method **(2)**
 - Macaulay's Method (3)
 - (4)Any of the above

सूचना - (पृष्ठ 1 वरून पुढे.....)

(8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

(9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

Pick out the correct word to fill in the blank:

(2)

Q. No. 201. I congratulate you ______ your grand success.

(1) for

(2) at

(3) on (4) about gill प्रश्नाचे योग्य उत्तर "(3) on" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक "③" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

ਸ਼. इत. 201.

4

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK

