महाराष्ट्र राजपतित् तांत्रिक सेवा (मुख्य) स्पर्धा परीक्षा- 2021

थांतिकी आमेरांतिको मुख्य परीक्षा 2021

BOOKLET No. प्रीष्ट्रा रहे. 1 ऑक्टोबर, 2,022 प्रश्नपुरितका –

B16

संच क्र.

A

यांत्रिकी अभियांत्रिकी पेपर - 1

वेळ: 2 (दोन) तास

एकूण प्रश्न : 100 एकूण गुण : 200

सूचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरफ्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही. एकापेक्षा जास्त उत्तरे नमूद केल्यास ते उत्तर चुकीचे धरले जाईल व त्या चुकीच्या उत्तराचे गुण वजा केले जातील.
- (7) प्रस्तुत परिक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चुकीच्या उत्तरांसाठी 25% किंवा 1/4 गुण वजा करण्यात येतील''.

ताकीढ

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

र्यत्रेक्षकांच्या सूचनेविना हे सील उघड़ नये

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

B16

· Commence of the state of the

l .	SI unit of absolute viscosity is N.s/m ² . unit? (1) 1 N.s/m ² = 10 poise		$10 \text{ N.s/m}^2 = 1 \text{ poise}$							
	0	(4)	$10 \text{ N.s/m}^2 = 1 \text{ stoke}$							
2.	The vertical distance between HGL (Hyd	raulic	Grade Level) and TEL (Total Energy							
	Level) is									
	$(1) \frac{\mathbf{v}^2}{\mathbf{g}} \qquad (2) \frac{\mathbf{v}^2}{2\mathbf{g}}$	(3)	$\frac{p}{\rho g}$ (4) $\frac{p}{\rho}$							
-	$(1) \frac{\mathbf{v}^2}{\mathbf{g}} \qquad \qquad (2) \frac{\mathbf{v}^2}{2\mathbf{g}}$	• •	ρ.g							
3.	Which among the following is true for con	ntinuv	um concept in fluid mechanics?							
	(1) The properties of matter are convariables.	nsider	ed as continuous function of space							
	(2) The properties of matter are discret	te func	ctions of time.							
	(3) Both (1) and (2) above									
	(4) None of the above									
4.	Normal acceleration in fluid flow situation	on exi	sts only when							
	(1) the flow is unsteady.									
	(2) the flow is two-dimensional.									
	(3) the streamlines are straight and parallel.									
	(4) the streamlines are curved.									
5.	Which of the following equations hold true for Pascal's law?									
٠.	$(1) P_{x} = P_{z} = 2P_{s}$	(2)	$P_s = P_x = P_z$							
	$(3) P_x = P_y = 2P_s$	(4)	None of the above							
6.	On account of which of the following do	es the	boundary layer exist?							
	(1) Surface tension	(2)	Gravitational effect							
	(3) Viscosity of fluid	(4)	None of the above							
7.	Printer's ink is an example of									
	(1) Newtonian fluid	(2)								
_	(3) Thixotropic substance	(4)	Elastic solid							
8.	The maximum velocity in a circular	pipe	when the flow is laminar, occurs a							
	$\frac{}{(1)}$ the top of the pipe	(2								
	(3) the centre of the pipe	(4) None of the above							

- 9. In which of the following measuring devices is Bernoulli's equation used?
 - (1) Venturimeter

(2) Orificemeter

(3) Pitot tube

- (4) All of the above
- 10. Streamlines, pathlines and streaklines are identical when
 - (1) the flow is uniform
 - (2) the flow is steady
 - (3) the flow velocities do not change steadily with time
 - (4) the flow is neither steady nor uniform
- 11. Which of the following expressions represents the energy boundary layer thickness?
 - $(1) \int\limits_0^\delta \frac{u}{U} \Biggl(1 \frac{u^2}{U^2} \Biggr) dy$

(2) $\int_{0}^{\delta} \left(1 - \frac{u}{U}\right) dy$

 $(3) \int_{0}^{\delta} \frac{u}{U} \left(1 - \frac{u}{U}\right) dy$

- (4) All of the above
- 12. Under which of the following conditions is the closure of the valve considered rapid?

 (Given L: Length of pipe, C: Velocity of pressure wave produced due to water hammer)
 - (1) The duration of valve closure is greater than $\frac{2L}{C}$
 - (2) The duration of valve closure is less than $\frac{L}{C}$
 - (3) The duration of valve closure is less than $\frac{2L}{C}$
 - (4) None of the above
- 13. When a body is immersed in a fluid, partially or completely, the force of buoyancy is equal to
 - (1) the weight of the body.
 - (2) the weight of the fluid displaced by the body.
 - (3) the weight of the volume of the fluid equal to the volume of body.
 - (4) None of the above

4.	Cons	ider the	stateme	ent:	1.		£∧1	lowing guant	tities	<u>.</u>	v
	A simple pitot tube can be used to measure the following quantities: Datum head										
		Static l				b.		riction head			
			ic head			d.	L I	riction nead			
		Total h									
	Ansv	wer opt	ions:			(0)			sat		
	(1)	a, b, d	are corre	ect		(2)	a,	c, e are corre			
	(3)	b, c, d a	are corre	ect		(4)	b,	c, e are corre			
5.	The	specific	speed o	f an i	mpulse tu	rbine with	on	e nozzle is 4.	If th	e same tur	bine is
	oper	ated wit	th two n	ozzle	s, what is t	the specific	sp	eeu :			
	(1)	$4\sqrt{3}$		(2)	$4\sqrt{2}$	(3)	5		(4)	5·5 	
L 6.	Whi	ch of the	e followi	ing is	an examp	le of free vo	rte	ex flow?			
	(1)	A whi	rlpool in	a riv	er						
	(2)	Flow o	f lianid	in cer	ntrifugal p	ump casing	5				
	(3)	Flow o	of liquid	throu	igh a hole j	provided at	th	e bottom of a	conta	amer	
	(4)		the abov							<u> </u>	
17.	Arr	ange th	e Peltor	ı turk	oine, Fran	cis turbine	an	nd Kaplan tu	ırbine	in the as	cending
	Arrange the Pelton turbine, Francis turbine and Kaplan turbine in the ascending order of their specific speeds.										
	: Valor Waller transfer										
	The literature between the contract of the con										
	 (2) Kaplan turbine, Francis turbine, Pelton turbine (3) Francis turbine, Kaplan turbine, Pelton turbine 										
		Poltor	as turbin	o Kai	olan turbir	ne, Francis	tui	rbine			
	(4)	renoi		e, Ita					···-		
18.	 Wh	ich of th	ne follow	ing is	s an examp	ole of pheno	me	enon of surfa	ce ten	sion?	
	(1)	Raind				(2)	J	Rise of sap in	a tre	e	
	(3)		k up of li	iquid	jets	(4)	4	All of the abo	ve		
19.	Wh	ich of tl	he follow	ring i	s true for I	Kaplan turk	oine	e ?			
10.	(1)	Which of the following is true for Kaplan turbine? (1) It is a low head and low discharge turbine									
	(2)										
	(3)	It is a	a high he	ead a	nd high dis	scharge tur	bin	ne			
	(4)		the abo								
20.	Wł	nich of t	the follo	wing	factors de	termine th	e f	riction factor	for f	urbulent f	low in
	rou	ıgh pipe	?								
	(1)	Mach	ı numbe	r and	relative re	oughness					
	(2)				nd mach nu						
	(3)					e roughnes:	s				
	(0)										
	(4)	Fran				roughness					

	שני	ie to larger intermolecular sp	andom molecular motion, the therma								
	COI	iductivity of gases is generally		_ that of the solids.							
	(1)		(2)	larger than							
	(3)	equal to	(4)	None of the above							
22.	Cri	tical radius of insulation for a	cylindrical l	oody is given by							
	(1)	k/2h	(2)								
	(3)	2k/h	(4)	None of the above							
23.		law states that th	e amount	of heat transfer due to conduction in							
	law states that the amount of heat transfer due to conduction is proportional to the cross-sectional area and temperature gradient.										
	(1)	Stefan-Boltzmann's	(2)								
	(3)	Fourier's	(4)	Kirchhoff's							
24.	Which of the following dimensionless number has a significant role in forced convection?										
	(1)	Prandtl number	(2)	Péclet number							
	(3)	Mach number	(4)	Reynolds number							
25.	Stor PE = (1) (3)	ed thermal and mechanical Potential Energy, KE = Kiner PE + KE – IE PE – KE + IE	energy is g tic Energy a (2) (4)	riven by relation where nd IE = Internal Energy. PE + KE + IE None of the above							
	(1) (3)	= Potential Energy, KE = Kiner PE + KE – IE PE – KE + IE	tic Energy a (2) (4)	nd IE = Internal Energy. PE + KE + IE None of the above							
	(1) (3)	Potential Energy, KE = Kiner PE + KE - IE PE - KE + IE ch of the following statements:	(2) (4) is incorrect	nd IE = Internal Energy. PE + KE + IE None of the above							
	PE = (1) (3) Whice (1)	Potential Energy, KE = Kines PE + KE - IE PE - KE + IE ch of the following statements: Emissivity of metallic surface	(2) (4) is <i>incorrect</i> s is generall	nd IE = Internal Energy. PE + KE + IE None of the above ? y small.							
	PE = (1) (3) Whice (1)	PE + KE - IE PE - KE + IE Ch of the following statements: Emissivity of metallic surface Emissivity of conductors decre	(2) (4) is incorrects is generall eases with in	nd IE = Internal Energy. PE + KE + IE None of the above ? y small.							
	Whice (1) (2) (3)	PE + KE - IE PE - KE + IE Ch of the following statements: Emissivity of metallic surface Emissivity of conductors decre The presence of oxide layer	(2) (4) is incorrects is generall eases with in	nd IE = Internal Energy. PE + KE + IE None of the above ? y small. ncreasing temperature.							
26.	Whice (1) (2) (3)	PE + KE - IE PE - KE + IE ch of the following statements: Emissivity of metallic surface Emissivity of conductors decre The presence of oxide layer metallic surfaces. All of the above	is incorrect s is generall eases with in	nd IE = Internal Energy. PE + KE + IE None of the above ?? y small. ncreasing temperature. nificantly increase the emissivity of							
26.	(1) (3) Whice (1) (2) (3) (4)	PE + KE - IE PE - KE + IE ch of the following statements: Emissivity of metallic surface Emissivity of conductors decre The presence of oxide layer metallic surfaces. All of the above	is incorrect s is generall eases with in	nd IE = Internal Energy. PE + KE + IE None of the above ?? ly small. ncreasing temperature.							
25. 26. 27.	(1) (3) Whice (1) (2) (3) (4) visco	PE + KE - IE PE - KE + IE ch of the following statements: Emissivity of metallic surface Emissivity of conductors decre The presence of oxide layer metallic surfaces. All of the above is the conversion from	is incorrect s is generall eases with in	nd IE = Internal Energy. PE + KE + IE None of the above ?? y small. ncreasing temperature. nificantly increase the emissivity of							

28.	Whi	Which of the following is true for opaque surfaces?									
	(1)	$\alpha + \rho + \tau = 1$				$\rho + \tau = 1$					
	(3)	$\alpha + \tau = 1$		_	(4)	$\alpha + \rho = 1$					
29.								em to operate in a			
							o its su	irroundings while			
	rece	iving energy b	y heat t	ransfer from							
	(1)	Kelvin-Plane			(2)	Clausius					
	(3)	Dittus Boelt	er 		(4)	Clapeyron					
30.	Fick	c's first law of	diffusio	n is related w	ith						
	(1)	diffusion flu		_							
	(2)			ivity and cond				ecition.			
	, ,	(3) diffusion flux, diffusivity and concentration with respect to position									
	(4)	None of the									
31.	In I	In Newton's law of cooling, heat transfer is given by									
	$Q = \hbar A (T_s - T_f).$										
	Her	re ħ is	he	eat transfer co	efficien	t.					
	(1)	average	(2)	local	(3)	global	(4)	None of the above			
32.	The	The unit of mass diffusivity is									
	(1)	$ m cm^2/sec$	(2)	kg/m·sec	(3)	$N-m/sec^2$	(4)	All of the above			
33.	The	The ratio of buoyancy forces to the viscous forces in the velocity boundary layer is									
	call										
	(1)	Grashof nur			(2)	Reynolds nu					
	(3)	Bond numb	e r		(4)	Eckert num	ıber				
34.	For	a specified in	nlet ten	nperature and	d given	heat load an	d same	e HE surface area,			
	wh	ich of the follo	wing is	true ?							
	(1)	$(LMTD)_{coun}$	ter flow >	(LMTD) _{paral}	lel flow						
	(2)	$(LMTD)_{coun}$	ter flow <	< (LMTD) _{paral}	lel flow						
	(3)	$(LMTD)_{coun}$	ter flow =	= (LMTD) _{paral}	lel flow						
	(4)	None of the	above								
कच्च	या कामा	साठी जागा / SP#	CE FOR	ROUGH WOR	K			P.T.O.			

35.	The ratio of the heat conduction rate to the thermal energy storage in a solution called											
	(1)	Biot number	(2)	Bond number								
	(3)	Fourier number	(4)									
36.	The	The compact heat exchangers are characterized by area density (β) as prescribed below										
	(1)	$\beta \ge 400 \text{ m}^2/\text{m}^3 \text{ for liqui}$	ds and $\beta \ge 700 \text{ m}^2$	$^{2}/\mathrm{m}^{3}$ for gases								
	(2)	$\beta \ge 400 \text{ m}^2/\text{m}^3 \text{ for gase}$	s and $\beta \ge 700 \text{ m}^2/\text{r}$	m³ for liquids								
	(3)											
	(4)	$\beta \le 700 \text{ m}^2/\text{m}^3 \text{ for gases}$	3									
37.	is a property that determines the fraction of the incident radiation											
	refle	reflected by a surface.										
	(1)	Absorptivity	(2)	Reflectivity								
	(3)	Refractivity	(4)	Emissivity								
38.		ch of the following rep	resents the conti	inuity equation for steady flow of	an							
	(1)	$\frac{\partial}{\partial \mathbf{x}}(\rho \mathbf{v}) \partial \mathbf{a} \cdot \partial \mathbf{b} \cdot \partial \mathbf{c}$	(2)	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{y}} + \frac{\partial \mathbf{w}}{\partial \mathbf{z}} = 0$	٠							
	(3)	Both (1) and (2)	(4)	None of the above								
39.	The rate at which radiation is incident upon a surface per unit area is called											
	(1)	Radiosity	(2)	Irradiation								
	(3)	Emissive power	(4)	Refraction								
10.	Conv	vective mass transfer occ	urs due to									
	(1)	Random motion of mole	cules									
	(2)	Transport of a substance	e by bulk flow									
	(3)	Both (1) and (2)										

(4) None of the above

- 41. The coefficient of performance of refrigeration is defined as
 - (1) $B_R = \frac{W_{in}}{Q_L}$

 $(2) \quad B_{R} = \frac{Q_{L}}{W_{in}}$

(3) $B_R = \frac{Q_L}{Q_L - W_{in}}$

- $(4) \quad B_{R} = \frac{W_{in}}{Q_{L} + W_{in}}$
- 42. Coefficient of Performance of Reversed Carnot cycle operating between T_H and T_L is given by the formula
 - $(1) \quad \frac{T_H T_L}{T_H}$

 $(2) \quad \frac{T_H}{T_H - T_L}$

 $(3) \quad \frac{T_L}{T_H - T_L}$

- (4) None of the above
- 43. Consider the following statements:
 - Statement I: In an air refrigerator the heat carried by air is in the form of sensible heat only.
 - Statement II: Therefore, mass of air circulation required is more than other refrigerant used systems.
 - Statement III: Therefore, mass of air circulation required is less than other refrigerant used systems.

Select the correct answer from the following:

- (1) Statement I and Statement II are correct
- (2) Statement II and Statement III are correct
- (3) Statement I and Statement III are correct
- (4) Only Statement I is correct
- 44. The viscosity of refrigerant used in refrigeration is required to be
 - (1) Medium

(2) Low

(3) High

- (4) None of the above
- 45. The purpose of condenser is to condense the gas coming out from exit of
 - (1) Evaporator

(2) Turbine

(3) Compressor

(4) Throttle

46.	Liqi	Liquid entry to refrigerant compressor is avoided due to									
	(1)	(1) Chances of scoring of piston and cylinder assembly only									
	(2)										
	(3)	Both (1) and (2) together									
	(4)	Leakage problem									
47.	For	comfort in winter season, air conditioning requires									
	(1)	Cooling and humidification (2) Cooling and dehumidification									
	(3)	Heating and humidification (4) Heating and dehumidification									
48.	The	arrangement of 3 temperature values of wet bulb, dry bulb and dew point									
	temperature in decreasing order will be										
	(1) Dew point temperature, dry bulb temperature, wet bulb temperature.										
	(2)	Dry bulb temperature, wet bulb temperature, dew point temperature.									
	(3)										
	(4)	None of the above									
49.	The performance of cooling and heating coil will be better with										
	(1)										
	(2)	~									
,	(3)										
	(4)	None of the above									
50.	What are the methods used for air conditioning duct design?										
	(1)	The state of the s									
	(2)	Velocity reduction method									
	(3)	Static regain method									
	(4)	All of the above									
51.	Duri	During adiabatic saturation process on unsaturated air remains constant.									
	(1)	Dry bulb temperature (2) Relative humidity									
	(3)	Wet bulb temperature (4) None of the above									
52.	If +-	and t ₂ be dry bulb temperature of air entering and leaving the cooling coil and									
·	_	average surface temperature of cooling coil, then the bypass factor of coil is									
	(1)	$\frac{t_2 - t_3}{t_1 - t_2} \qquad (2) \frac{t_1 - t_3}{t_2 - t_2} \qquad (3) \frac{t_3 - t_1}{t_2 - t_3} \qquad (4) \frac{t_3 - t_2}{t_1 - t_3}$									
	/	$t_1 - t_2$ $t_2 - t_3$ $t_1 - t_2$									

53.	The cross-sectional area of one cylinder of an engine multiplied by stroke length is called											
	(1)	Eng	ine cap	acity			(2)	All cylinder volume				
	(3)	Swe	pt volu	me			(4)	Clearance volume				
54.	For	the sa	ame si	ze, the	actual power	er produ	ıced	by a two-stroke engine as compared to				
	a fo	four-stroke engine is										
	(1)											
	(3)	the	same				(4)	None of the above				
55.		If Otto cycle and Diesel cycle are working under same maximum pressure and temperature, which of the following statements is correct?										
	(1)	Hea	t rejec	ted by	both cycles i	s same.						
	(2)	Hea	t supp	lied to	Diesel cycle	is more	tha	in that of the Otto cycle.				
	(3)	Dies	sel cycl	e is me	ore efficient	than Ot	to cy	ycle.				
	(4)	All	of the a	above								
56.	In which engine is dissociation effect more pronounced?											
	(1)	SI e	ngine					• •				
	(2)	CI e	engine									
	(3)	Bot	h SI ar	ıd CI e	ngine							
	(4)	Nor	e of th	e abov	e -							
57.	Fin	Find the matching pairs for reducing the detonation of SI engine.										
	a.	Spa	rk tim	ing		I.	We	eak				
	b.	Hu	midity	_		II.	Re	etard				
	c.	Dis	tance o	f flam	e travel	III.	Inc	crease				
	d.	Air-	-fuel ra	ıtio		IV.	Re	educe				
	An	swer	option	ıs:								
		a	b	c	d							
	(1)	II	III	IV	I							
	(2)	II	IV	III	I							
	(3)	II	I	IV	III							
	(4)	IV	I	III	II							
कच्च	ा कामा	साठी ज	ागा / ऽ।	PACE F	OR ROUGH V	NORK		P.T.O.				

- 58. The relationship between octane number and cetane number is
 - (1) $CN = \frac{104 ON}{3.75}$

(2) $ON = \frac{104 - CN}{3.75}$

(3) $CN = \frac{104 - ON}{2.75}$

- (4) $ON = \frac{104 CN}{2.75}$
- **59.** Thermostat valve in water cooling system starts to open at about ______ temperature.
 - (1) 90°C
- (2) 80°C
- (3) 100°C
- (4) 70°C
- **60.** In a typical diesel engine, generally how much amount of heat is going to the cooling water?
 - (1) 10%
- (2) 50%
- (3) 70%
- (4) 30%
- 61. Which of the following factors are used for deciding degree of supercharging in compression ignition engine?
 - (1) Thermal load

- (2) Size of piston
- (3) Type of fuel supply system
- (4) None of the above
- 62. The cubic capacity of four-stroke SI engine is 250 cc. The oversquare ratio of engine is 1.2 and the clearance volume is 30 cc. What is the compression ratio of the engine?
 - (1) 8.5
- (2) 9
- (3) 10.3
- (4) 9.33
- **63.** Which of the following fuel-air mixture results in less hydrocarbon emission?
 - (1) Lean fuel mixture
 - (2) Rich fuel mixture
 - (3) Stoichiometric fuel air mixture
 - (4) Fuel air mixture does not have any effect on hydrocarbons
- 64. For comparison of two types of engine, the correction factor is given by
 - (1) Correction factor = $\frac{20}{\%\text{CO}_2 + \%\text{CO} + \%\text{C}}$
 - (2) Correction factor = $\frac{15}{\%CO_2 + \%CO + \%C}$
 - (3) Correction factor = $\frac{20}{\%CO_2 + \%NO_x + \%C}$
 - (4) Correction factor = $\frac{20}{\%HC + \%NO_x + \%CO_2}$

65 .	Which of the following statements is correct with respect to Regenerative cycle?									
	(1)	The heat rejected in the condenser is at a higher rate and thus efficiency is lower.								
	(2)	The heat rejected in the condenser is at a reduced rate and thus efficiency is higher.								
	(3)	The heat added in the condenser is at a reduced rate and thus efficiency is higher.								
	(4)	The heat added in the condenser is at a higher rate and thus efficiency is lower.								
66.	The	e thermal efficiency of Gas Turbine Power Plant can be increased by								
	(1)	Intercooling								
	(2)	Reheating								
	(3)	Regeneration								
	(4)	All of the above								
67.	A fluidised bed may be defined as the bed of									
	(1)	solid particles behaving as a gas								
	(2)	solid particles behaving as a fluid								
	(3)	liquid particles behaving as a gas								
	(4)	gas particles behaving as a liquid								
68.	The	The proximate analysis of coal gives								
	(1)	various chemicals like carbon, hydrogen, oxygen and ash.								
	(2)	fuel constituents as percentage by volume of moisture, fixed carbon and ash.								
	(3)	percentage by weight of moisture, volatile matter, fixed carbon and ash.								
	(4)	None of the above								
69.	In r	un off river plant, the power generated depends on								
	(1)									
	(2)	the depth of the river.								
	(3)									
	(4)	the quantity of flow.								

70.	In two-stage gas turbine plant, with intercooling and reheating										
	(1) both work ratio and thermal efficiency improves.										
	(2)	·									
	(3)	thermal efficiency improve	es but work rat	io decrea	ases.						
	(4)	both work ratio and therm	nal efficiency de	creases.							
71.		to high negative tempera	ture coefficient	, a PWI	R is	in operation	and				
	(1)	safe and unstable	(2)	unsafe	but stable						
	(3)	safe and stable	(4)	unsafe	and unsta	ible					
72.	A D	A Diesel Power Plant is used as									
	a.	Peak load plant									
	b.	Mobile plant									
	c.	Standby unit									
	d. Nursery station										
	Which one of the above options is/are correct?										
	(1)	(1) a and b									
	(2)	(2) b and c									
	(3)	(3) a, b and c									
	(4)	All of the above									
73.	The part load efficiency for which cycle of Gas Turbine Power Plant is observed to be the best?										
	(1)	Open cycle with regenerat	tor								
	(2)	Closed cycle									
	(3)	Semi-closed cycle									
	(4)	Simple open cycle									
74.	The pres	The operation of boiler is similar to an electric transformer in which two pressures are used to effect an interchange of heat energy.									
	(1)	LaMont									
	(2)	Benson									
	(3)	Loeffler					-				
	(4)	Schmidt – Hartmann									
	(4) Delimite 11th man-1-										

75.	In of	case of solar concentrators, if the length 1m and width 1m reflector is in the form trough with parabolic cross-section, the solar radiation will be focused along a									
٠	<u> </u>	Point									
	(2)	Vertex point									
	(3)	Line									
	(4)	None of the above									
76.	In	In paraboloid dish collector, to achieve high, it is required to build a									
		nt focusing collector.									
	(1)	Concentration Ratio (CR)									
	(2)	Temperature									
	(3)	Concentration Ratios and temperature									
	(4)	Radiation									
77.	In sali	upper convective zone, non-convective zone and storage zone of solar pond the nity									
	(1)	is same throughout									
	(2)	decreases from upper zone to storage zone									
	(3)	increases from upper zone to storage zone									
	(4)	is more in upper convective zone only									
78.	The	rate at which solar energy arrives at the top of the atmosphere is called									
	(1)	Diffuse radiation									
	(2)	Solar constant									
	(3)	Scattering									
-	(4)	Beam radiation									
79.	In h	omojunction cells with silicon as base material and manufactured as amorphous on, means it is									
	(1)	non-crystalline silicon.									
	(2)	polycrystalline silicon.									
	(3)	single crystal silicon.									
	(4)	heterojunction cell.									
— कच्च्या	कामास	ाठी जागा / SPACE FOR ROUGH WORK									

80.	The maximum rated power capacity of wind turbine is given for a specified rated wind speed commonly about											
	(1)	21 m/s	(2)	31 m/s								
	(3)	12 m/s	(4)	50 m/s								
81.	Win	d power produced is proportional to										
	(1) square of wind velocity											
	(2)	cube root of wind velocity										
	(3)	cube of wind velocity										
	(4)	square root of wind velocity										
82.	Theoretically, what is the maximum power extracted by a turbine rotor out of the total wind energy in the area swept by the rotor?											
	(1)	5.93%	(2)	70.3%								
	(3)	59.3%	(4)	35·1%								
83.	For effective installation of a windmill the minimum average wind speed should be											
	(1)	above 7 m/sec										
	(2)	in between 1 m/sec to 3 m/sec										
	(3)	less than 5 m/sec										
	(4)	more than 100 m/sec										
84.	A v	A wind farm generated energy to the grid but during the no-wind periods the local requirement of the energy is met from the grid.										
	(1)	imports										
	(2)	(2) exports										
	(3)	shares half										
	(4)	does not supply	4									
		·										

- 85. Which of the following is the correct statement for all possible processes that a system in the given surrounding undergoes?
 - $(1) \quad ds]_{system} \leq 0$
 - $(2) \quad ds]_{surround} \geqslant 0$
 - (3) $(ds]_{system} + ds]_{surround} \ge 0$
 - ${\rm (4)} \quad {\rm (ds]}_{\rm system} + {\rm ds]}_{\rm surround}) < 0$
- 86. When water is heated at a constant pressure above critical point, then
 - (1) it forms liquid + vapour two-phase mixture
 - (2) it forms dry saturated steam
 - (3) it flashes suddenly into vapour
 - (4) any of the above is possible
- 87. All natural processes are carried out
 - (1) with finite gradient
 - (2) infinitely slowly
 - (3) so that all states passed are in equilibrium
 - (4) All of the above
- 88. Which of the following statements is correct for Heat and Work?
 - (1) Heat and work are properties of the system.
 - (2) Both heat and work can be stored in the system.
 - (3) Heat and work are independent of path of process.
 - (4) None of the above
- 89. For a reversible process with law $PV^n = constant$, match the following depending on value of index 'n'.
 - a. n = 0
 - b. $n = \infty$
 - c. n = 1
 - d. $n = \gamma$

- I.
- Isothermal
 - II. Isobaric
 - III. Isochoric
 - IV. Adiabatic

Answer options:

	а	b	c	d
(1)	II	I	IV	III
(2)	II	III	I	\mathbf{IV}
(3)	III	I	IV	II
(4)	III	II	I	IV

90.	ocooling water is 50 kJ/kg and work input is 100 kJ/kg. Calculate the change in internal energy of the working fluid.				
	(1) (3)	150 kJ/kg 50 kJ/kg	(2) (4)	100 kJ/kg 75 kJ/kg	
					91.
(1)	$V(P_2 - P_1)$	(2)	Zero		
(3)	$P(V_2 - V_1)$	(4)	$\mathbf{P_1V_1} \ln \left(\mathbf{P_2/P_1} \right)$		
92.	The enthalpy of dry saturated steam with the increase in pressure.				
	(1)	increases	(2)	remains constant	
	(3)	decreases	(4)	None of the above	
93.	If 1 kg of water is heated from 0°C to 100°C the sensible heat added to it will be				
	(1)	450 kJ	(2)	418 kJ	
	(3)	335 kJ	(4)	All of the above	
94.	Which of the following <i>cannot</i> be the ideal reversible process?				
	(1)	Condensation and boiling of liquids			
	(2)	Frictionless adiabatic expansion			
	(3)	Frictionless isothermal expansion			
	(4)	Mixing of two fluids			
95.	The Carnot cycle consists of four reversible processes. Which of the following represents the correct Carnot cycle?				
	(1) Reversible isothermal expansion, reversible adiabatic expansion, reversible isothermal compression, reversible adiabatic compression				
	(2)	adiabatic expansion		apression, isentropic heat addition,	
	(3)	(3) Constant volume heat addition, adiabatic compression, adiabatic expansion, heat rejection			
	(4)	All of the above			

- 96. A centrifugal pump receives water at atmospheric pressure of 103 kPa and delivers it at 600 kPa. Neglecting kinetic and potential energy changes, find the work done on water per unit mass if there is no change in specific volume of water. The specific volume of water is 0.001 m³/kg.
 - (1) 0·497 kJ

(2) -0.497 kJ

(3) -0.523 kJ

- (4) 0.523 kJ
- 97. According to Avogadro's hypothesis
 - (1) the volume of 1 mole of any gas is same as the volume of any other gas when the gases are at same temperature and pressure.
 - (2) the weight of one mole of any gas is same as the weight of any other gas.
 - (3) the volume of 1 kg of gas is same as volume of any other 1 kg of gas.
 - (4) None of the above
- 98. In a closed rigid container containing air at atmospheric pressure and 300 k, 100 kJ of energy is added in the form of heat. What would be the increase in the internal energy?
 - (1) 105 kJ
 - (2) 95 kJ
 - (3) 100 kJ
 - (4) 90 kJ
- 99. Which of the following is correct for an isolated system?
 - (1) dQ = 0
 - (2) dW = 0
 - $(3) \quad dE = 0$
 - (4) All of the above
- 100. An isentropic process is always
 - (1) irreversible and adiabatic
 - (2) reversible and isothermal
 - (3) frictionless and irreversible
 - (4) reversible and adiabatic

सूचना - (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

Pick out the correct word to fill in the blank:

Q. No. 201. I congratulate you ______ your grand success.

(1) for

(2) at

- (3) on (4) about ह्या प्रश्नाचे योग्य उत्तर "(3) on" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक "③" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.
- प्र. क्र. 201. ① ② ④

 अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या

 उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता

 फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK