परीक्षेत्रे नाव!- शहायक मोटार वाहन निरीक्षक (मुख्य)परीक्षा-2020

प्रश्नपुस्तिका क्रमांक BOOKLET No. परीक्षा हि. २० जीव्या २०२१

प्रश्नपुस्तिका

F14

केंद्राची संकेताक्षरे

संच क्र.

शेवटचा अंक

104973

यंत्र अभियांत्रिकी स्वयंचल अभियांत्रिकी/ यंत्र अभियांत्रिकी/स्वयंचल अभियांत्रिकी

पक्रण प्रश्न : 150 एक्रण गुण : 300

वेळ : $1\frac{1}{2}$ (दीड) तास

सूचना

(1) <u>उमेदवारांनी एकूण 150 प्रश्न सोडवावयाचे आहेत.</u> उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

(3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.

(4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरफ्रमांक नमूद कराताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

(5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.

(6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही. एका पेक्षा जास्त उत्तरे नमूद केल्यास ते उत्तर चुकीचे धरले जाईल व त्या चुकीच्या उत्तराचे गुण वजा केले जातील.

(7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चुकीच्या उत्तरांसाठी 25% किंवा 1/4 गुण वजा/कमी करण्यात येतील.''

विशेष सूचना:

सदर प्रश्नपत्रिका विभाग 'अ', 'ब' आणि 'क' विभागांमध्ये विभागण्यात आली आहे. त्यापैकी विभाग 'अ' – Mechanical Engineering – Automobile Engineering मधील प्रश्न (प्र. क्र. 1 – 120) हे अनिवार्य आहेत. तर विभाग 'ब' – Mechanical Engineering (प्र. क्र. 121 – 150) किंवा विभाग 'क' – Automobile Engineering (प्र. क्र. 151 – 180) यापैकी एकाच विभागातील प्रश्न सोडविणे बंधनकारक आहे. याची कृपया उमेदवारांनी नोंद घ्यावी.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपयंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपयंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82" यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या शेवटच्या पानावर पहा

पर्यवेक्षकांच्या सूचनेविना हे सील उघडू नये

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK

1.

In climb milling

विभाग 'अ'

	(1) work moves in the same direction as rotation of the cutter.									
	(2)	· · · · · · · · · · · · · · · · · · ·								
	(3)									
	(4)	work is fed to cutter in lateral direc	tion.							
2.	The machining process that will be most appropriate to drill a rectangular hole in ceramic material is									
	(1)	Drilling Machining	(2)	Ultrasonic Machining						
	(3)	Electric Discharge Machining	(4)	Chemical Machining						
3.	Ferrous metals include which of the following ?									
	(1)	Cast iron, Aluminium	(2)	Cast iron, Steel						
	(3)	Steel, Copper	(4)	Steel, Aluminium						
4.	Whi	Which of the following is desired in materials used for springs?								
	(1)	Stiffness (2) Toughness	(3)	Resilience (4) Elasticity						
5.	The	machinability of steel is improved by	addi a	ng						
	(1)	Nickel and Chromium	(2)	Nickel						
	(3)	Chromium	(4)	Sulphur, Lead and Phosphorus						
6.	Whi	Which one of the following is a machine used to perform extrusion?								
	(1)	Forge hammer	(2)	Milling machine						
	(3)	Press machine	(4)	Torch						
7.	Cra	ter wear is predominant in								
	(1)	Carbon steel tools	(2)	Tungsten carbide tools						
	(3)	High speed steel tools	(4)	Ceramic tools						
कुच्छ	ग कामार	प्ताठी जागा / SPACE FOR ROUGH WORK		P.T.O.						

		iai je iniae.	hining (EDM) process should						
	(1) ionise rapidly after the spark discharge has taken place.								
	(2) have a high viscosity.								
	(3) be chemically neutral so as to	not attack	the electrode.						
	(4) have a low flash point.								
9.	Which one of the following material	s has the l	nighest hardness?						
	(1) Aluminium oxide	(2)	Cubic boron nitride						
	(3) HSS	(4)	Tungsten carbide						
10.	A drill will not cut if								
	(1) Helix angle is small.	(2)	Lip angle is zero.						
	(3) Lips are of unequal length.	(4)	The flutes get filled up with chips.						
11.	A drill bit of 20 mm diameter	rotating	at 500 rpm with a feed rate of						
11.		a through	a-hole in a mild steel plate of 20 mm						
11.	0.2 mm/revolution is used to drill	a through	a-hole in a mild steel plate of 20 mm						
11.	0.2 mm/revolution is used to drill thickness. The depth of cut in this d	a through	n-hole in a mild steel plate of 20 mm ration is						
11.	0·2 mm/revolution is used to drill thickness. The depth of cut in this d (1) 0·2 mm (3) 20 mm	a through rilling ope (2) (4)	n-hole in a mild steel plate of 20 mm ration is						
	0.2 mm/revolution is used to drill thickness. The depth of cut in this d (1) 0.2 mm (3) 20 mm Of the following processes, which	a through rilling ope (2) (4)	n-hole in a mild steel plate of 20 mm ration is 10 mm 2 inm						
	0.2 mm/revolution is used to drill thickness. The depth of cut in this d (1) 0.2 mm (3) 20 mm Of the following processes, which rates?	a through rilling ope (2) (4) one is no	ted for the highest material removal						
	0.2 mm/revolution is used to drill thickness. The depth of cut in this d (1) 0.2 mm (3) 20 mm Of the following processes, which rates? (1) Electric discharge machining (3) Water jet cutting	a through rilling ope (2) (4) one is no (2) (4) means of	ration is 10 mm 2 inm ted for the highest material removal Laser beam machining						
12.	0.2 mm/revolution is used to drill thickness. The depth of cut in this d (1) 0.2 mm (3) 20 mm Of the following processes, which rates? (1) Electric discharge machining (3) Water jet cutting The process of removal of metal by successive teeth of enlarging size is	a through rilling ope (2) (4) one is no (2) (4) means of called	ted for the highest material removal Laser beam machining Plasma arc cutting an elongated tool having a number of						
12.	0.2 mm/revolution is used to drill thickness. The depth of cut in this d (1) 0.2 mm (3) 20 mm Of the following processes, which rates? (1) Electric discharge machining (3) Water jet cutting	a through rilling ope (2) (4) one is no (2) (4) means of	n-hole in a mild steel plate of 20 mm ration is 10 mm 2 inm ted for the highest material removal Laser beam machining Plasma arc cutting						

14.	Higher work speeds in grinding cause								
	(1)	Increased heat produced			(2)	Increased wheel wear			
	(3)	Improved sur	face fir	nish	(4)	Decreased wh	ieel we	ear	
15.	Sug	gest the machin	ne to b	e used for accu	ırate cu	itting of teeth o	of inter	nal spur gears.	
	(1)	Milling	(2)	Hobbing	(3)	Forming	(4)	Gear shaper	
16.	The	APT command	GOR	GT is which of	the foll	owing?			
	(a)	Continuous p	ath co	mmand					
	(b)	Geometry sta	temen	t involving a v	olume o	of revolution al	out a	central axis	
	(c)	Point to point							
	(d)	Tool path con	nmand	in which the t	ool mu	st go right in tl	ne next	t move	
	(1)	(a) and (d)			(2)	(a) and (b)			
	(3)	(b) and (d)			(4)	(b) and (c)			
17.	In a centre lathe, the spindle speed will be lowest during								
	(1)	Taper turning	g		(2)	Thread cuttin	ng		
	(3)	Parting off			(4)	Knurling			
18.	Ability of material to undergo large permanent deformation in tension is known as								
	(1)	Toughness	(2)	Plasticity	(3)	Stiffness	(4)	Hardness	
19.	The surface of a slip gauge is produced by								
-	(1)	Milling	(2)	Grinding	(3)	Burnishing	(4)	Lapping	
20.	A u	nique advantag	ge of C	NC systems is	that a	diagnostic pro	gram c	an be executed on	
	its								
	(1)	Microcontroll	er		(2)	Computer			
	(3)	Microprocess	or		(4)	None of the a	bove		
መጀመ	ர காய	साती जागा / SPAC	E EOB	BOUGH WORK	 _			DTO	

21.

22.

23.

24.

25.

27.

(2)

(3)

(4)

side (1)

(1)

(2)

(3)(4)

(2)

(3)

(3)

(4)

(1)

(3)

crank chain?

Chain is locked

Elliptical trammel Oldham's coupling

None of the above

(1) $r\omega^2 \left[\sin \theta + \frac{\sin 2\theta}{n} \right]$

Chain is unconstrained

Pantograph mechanism

In the 'Criteria of constraint', J + 0.5H = 1.5L - 2, if Left-hand side > Right-hand

(2)

(4)

Which one of the following mechanisms represents an inversion of single slider

Instantaneous centre of rotation of round disc rolling on straight horizontal path

At the centre of the circle whose diameter is equal to diameter of the disc

(2)

(4)

At the point of contact of the disc with straight horizontal path

Chain is constrained

None of the above

(2) $r\omega \left[\cos\theta + \frac{\cos 2\theta}{n}\right]$

One of the links is fixed

None of the above

The screws are termed as self-locking screws when ______.

angle of friction is less than helix angle

angle of friction is equal to helix angle

angle of friction is more than helix angle

angle of friction is twice the helix angle

Whitworth quick return mechanism

The acceleration of piston of a reciprocating engine is ___

decreases with increase in pitch of the screw jack

A constrained kinematic chain is known as a mechanism when

without slipping has its centre of rotation
(1) At the centre of gravity of the disc

	$(3) r\omega^2 \left[\cos\theta + \frac{\cos 2\theta}{4n} \right] \tag{4}$	$r\omega^2$ $\left[cc\right]$
26.	The efficiency of screw jack (1) increases with increase in pitch of the	screw jack
	(2) decreases with increase in load on jack	_

increases with increase in load on jack

None of the links are fixed

Two of the links are fixed

Α		7		F14
28.		power from the engine gear box to the	he rea	ar axle of an automobile is transmitted
	(1)	worm and worm wheel	(2)	spur gear
	(3)	bevel gear	(4)	Hooke's joint
29.		ch of the following involves designing size?	ng of i	machine elements related to its shape
	(1)	Kinetics	(2)	Kinematics
	(3)	Dimensional Synthesis	(4)	All of the above
30.	Whe	en the semicone angle increases, the	torque	e transmitting capacity of cone clutch
	(1)	Increases	(2)	Decreases
	(3)	Remains constant	(4)	None of the above
31.	Mul	ti disk clutches are		
	(1)	Dry running clutches	(2)	Wet running clutches
	(3)	Having high coefficient of friction	(4)	None of the above
32.	Wh	ich lubricant is used in a rope brake	dynan	nometer?
	(1)	Water	(2)	Oil
	(3)	Grease	(4)	No lubricant
28. 29. 30.			s, the	effect of gyroscopic couple acting will
	ten	d to move the ship		
	(1)	towards starboard		
	(2)	towards port side		
	(3)	to raise the bow and lower the ster		
	(4)	to raise the stern and lower the box	w 	
34.	For	high speed engine applications, the	best n	notion suggested for cam follower is
	(1)	uniform velocity		
	(2)	simple harmonic motion		
	(3)	uniform acceleration and retardation	on	
	(4)	cycloidal motion		

- 35. The ratio of height of a Porter governor to that of a Watt governor when the length of the links and the arms are same is given by _____.
 - $(1) \quad \frac{M+m}{M}$

 $(2) \quad \frac{M+m}{m}$

 $(3) \quad \frac{M}{M+m}$

- $(4) \quad \frac{\mathbf{m}}{\mathbf{M} + \mathbf{m}}$
- 36. In a cam follower motion, the follower has constant acceleration when it moves with
 - (1) simple harmonic motion
- (2) cycloidal motion

(3) polynomial motion

- (4) parabolic motion
- **37.** If the controlling force of a governor increases with increase in speed, the governor is said to be
 - (1) sensitive

(2) insensitive

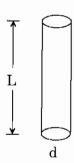
(3) isochronous

- (4) unstable
- 38. The efficiency of a screw jack is maximum when
 - (1) $\alpha = 45^{\circ} \frac{\phi}{4}$

 $(2) \quad \alpha = 45^{\circ} + \frac{\phi}{4}$

(3) $\alpha = 45^{\circ} - \frac{\phi}{2}$

- $(4) \quad \alpha = 45^{\circ} + \frac{\phi}{2}$
- **39.** An imaginary circle which by pure rolling action provides the same motion as the actual gear is known as _____.
 - (1) Base circle


(2) Pitch circle

(3) Addendum circle

- (4) Dedendum circle
- 40. In a reverted gear train, the axes of the first and last gear are _____
 - (1) parallel
 - (2) skew
 - (3) coaxial
 - (4) perpendicular to each other

41.	Prin	nter ink is an example of		
	(1)	Elastic solid		
	(2)	Newtonian fluid		
	(3)	Thyxotropic substance		
	(4)	Non-Newtonian fluid		
42.	Sur	face tension is expressed in	_	
	(1)	N/m	(2)	N/m^2
	(3)	N ² /m	(4)	N/m ³
43.	The	value of bulk modulus of elasticity _		with increase in pressure.
	(1)	increases	(2)	decreases
	(3)	Either of the above	(4)	None of the above
44.	Wh	ich of the following is an advantage o	f man	ometers used in flow measurement?
	(1)	Good Accuracy	(2)	High Sensitivity
	(3)	Little Maintenance	(4)	All of the above
45.	The	total energy represented by Bernoul	li's eq	vation $\left(\frac{p}{\omega} + \frac{V^2}{2g} + z\right)$ has units
	(1)	Nm/s	(2)	Ns/m
	(3)	Nm/m	(4)	Nm/kg
46.	If th	ne Reynolds number is less than 2000), the	flow in the pipe is
	(1)	Turbulent flow	(2)	Laminar flow
	(3)	Transition flow	(4)	None of the above
47.	The	piezometer measures pres	sure (only.
	(1)	Absolute	(2)	Gauge
	(3)	Atmospheric	(4)	Any of the above
25 II		THE THE PERSON HOUSE WORK		

48. Consider a liquid jet of diameter 'd' and length 'L' as shown in the figure.

The pressure intensity inside the liquid jet above the outside pressure is expressed as _____, where σ = surface tension on the liquid.

 $(1) \quad P = \ \frac{\sigma \times 2L}{L \times d}$

(2) $P = \frac{\sigma}{L \times d}$

(3) $P = \frac{\sigma \times 2L}{d}$

- (4) None of the above
- **49.** Surface tension phenomenon is illustrated through the following example :
 - (1) Rain drop

(2) Rise of sap in tree

(3) Break up of liquid

- (4) All of the above
- 50. In case of Laminar Flow, the loss of Pressure head is proportional to
 - (1) Velocity

(2) Velocity²

(3) Velocity³

- (4) None of the above
- **51.** The pressure gradient in the direction of flow is equal to the shear gradient in the direction
 - (1) Parallel to the direction of flow
- (2) Normal to the direction of flow

(3) Either of the above

- (4) None of the above
- **52.** A turbulent flow is considered to be a steady flow when
 - (1) the algebraic sum of velocity fluctuation is zero.
 - (2) the velocity at a point does not change with time.
 - (3) temporal mean velocity at a point remains constant with time.
 - (4) the discharge remains constant.
- **53.** The shear in turbulent flow is mainly due to
 - (1) heat transfer

- (2) mass transfer
- (3) momentum transfer
- (4) All of the above

54.	Inte	ensity of turbulence is								
	(1)	the average kinetic energy of turbulence	е							
	(2)	the violence of turbulence fluctuation and measured by root mean square value of velocity fluctuation								
	(3)	the mean time interval between the reversals in the sign of velocity fluctuation								
	(4)	None of the above								
55.	If the flow is irrotational as well as steady, it is known as									
	(1)	non-uniform flow (2)	one-dimensional flow						
	(3)	potential flow (4))	None of the above						
56.	is a curve which gives an instantaneous picture of the location of fluid particles which have passed through a given point.									
	(1)	Path line (2)	Stream line						
	(3)	Streak line (4)	None of the above						
57.	In a	In a steady flow, the velocity								
	(1)	does not change from place to place.								
	(2)	at a given point does not change with time.								
	(3)) may change its direction but the magnitude remains unchanged.								
	(4)	None of the above								
58.	In a	In a forced vortex,								
	(1)	the fluid velocity is inversely proportion	ıa	l to the radius.						
	(2)	the fluid rotates without any relative ve	elo	ocity.						
	(3)	the rise depends upon the specific weig	ht							
	(4)	the rise is proportional to the cube of an	ıg	ular velocity.						
59.	The	ne taper of divergent cone of venturimeter	is	in range of						
	(1)	20° to 23° (2)	5° to 8°						
	(3)	60° to 65° (4)	None of the above						
6 0.	Wh	hich fluid among the following fluids has n	na	ximum surface tension ?						
	(1)	Water (2) Kerosene (3)	Glycerine (4) Mercury						
A TOTAL	T ASTUUR	THE STATE LEDGE FOR BOLICH MORK	_		DTO					

_	_		
	_	-	
	-	-	4

61.	A p	process in which the temperature of ing expansion or compression is called	the	working substance remains constant					
	(1)	adiabatic process	(2)	isothermal process					
	(3)	polytropic process	(4)	hyperbolic process					
62.	The	e measurement of a temperature is bas	ed u	pon					
	(1)	Zeroth law of thermodynamics							
	(2)	First law of thermodynamics							
	(3)	Second law of thermodynamics							
	(4)	Newton's law of cooling							
63.			ng h	eat from a single temperature source.					
	This is (1) Clausius statement								
	(2) Carnot theorem								
	(3) Kelvin-Planck statement								
	(4)	Joule's law							
64.	In a Carnot cycle, the addition and rejection of heat takes place at a								
	(1)	constant pressure	(2)	constant volume					
	(3)	constant temperature	(4)	constant enthalpy					
65.	Conversion of heat into work requires some special devices. Such devices are called								
	(1)	Cycles	(2)	Processes					
	(3)	Machines	(4)	Heat Engines					
66.	In tl	he Rankine cycle, the heat is added							
	(1)	isothermally	(2)	at constant volume					
	(3)	at constant pressure	(4)	adiabatically					
67.	Whi	ch one of the following is the most pop	ular	vapour power cycle ?					
	(1)	Carnot Cycle	(2)	Rankine Cycle					
	(3)	Joule Cycle	(4)	Binary Cycle					

6 8.	Calculate the free air delivery (FAD) of a compressor for the following data:							
	Receiver capacity = 0.25 m ³ , Initial pressure = 1 bar, Final pressure = 1 Initial temperature = 22° C, Final temperature = 42° C, Additional ho volume = 0.05 m ³ , Compressor pump up time = 3.9 minutes. (1) 0.88 (2) 0.83 (3) 0.45 (4) 0.9							
69.	A vessel having a volume of 0.6 m ³ contains 3 kg of liquid water and water water in equilibrium. The specific volume of mixture is	/apour						
	(1) $0.2 \text{ m}^3/\text{kg}$ (2) $0.5 \text{ m}^3/\text{kg}$							
	(3) $1.8 \text{ m}^3/\text{kg}$ (4) $5 \text{ m}^3/\text{kg}$							
70.	For the same compression ratio, the efficiency of Dual cycle is							
	(1) lesser than Diesel cycle.							
	(2) greater than Diesel cycle.							
	(3) lesser than Diesel cycle and greater than Otto cycle.							
	(4) greater than Diesel cycle and lesser than Otto cycle.							
71.	Otto cycle is also known as							
	(1) Constant volume cycle (2) Constant pressure cycle							
	(3) Constant temperature cycle (4) Constant weight cycle							
72.	The efficiency of the Carnot engine using an ideal gas as working substance is							
	$(1) \frac{T_{H} - T_{L}}{T_{H}} \qquad (2) \frac{T_{H} - T_{L}}{T_{H} T_{L}} \qquad (3) \frac{T_{H}}{T_{H} - T_{L}} \qquad (4) \frac{T_{L}}{T_{H} - T_{L}}$							
73.	The energy coming from outer atmosphere is							
	(1) Stored energy (2) Capital energy							
	(3) Celestial energy (4) Transitional energy							
74.	A gas contained in a cyclinder is compressed, the work required for compressing 5000 kJ. During this process, heat interaction of 2000 kJ caus surroundings to be heated. The change in internal energy of the gas duri process is	es the						

(1) -7000 kJ (2) -3000 kJ (3) +3000 kJ

(4) + 7000 kJ

7 5.	The law of thermodynamics, when convertible is known as	nich states	s that heat and work are mutu	ally
	(1) Zeroth law of thermodynamic	s.		
	(2) First law of thermodynamics.			
	(3) Second law of thermodynamic	s.		
	(4) Third law of thermodynamics.			
76.	The free expansion process is a			
	(1) constant volume process.			
	(2) constant pressure process.			
	(3) constant enthalpy process.			
	(4) constant temperature process.			
77.	Carnot cycle has maximum efficience	cy for		
	(1) Petrol engine	(2)	Diesel engine	
	(3) Reversible engine	(4)	Irreversible engine	
78.	The compressor efficiency of a recip	rocating ai	ir compressor is given by	
	$(1) \frac{\text{Indicated Power}}{\text{Isothermal Power}}$	(2)	Isothermal Power Indicated Power	
	$(3) \frac{\text{Isothermal Power}}{\text{Brake Power}}$	(4)	Brake Power Isothermal Power	
79.	Heat is transferred to a heat engine waste heat rejection to a nearby rive			of
	(1) 35 MW (2) 145 MW	(3)	- 45 MW (4) 0 MW	
80.	In a reciprocating air compressor, t	he work in	nput is minimum when compression	is
	(1) isentropic	(2)	isothermal	
	(3) isobaric	(4)	polytropic	
कच्च्य	कामासाठी जागा / SPACE FOR ROUGH WO	DRK		_

81.	Incre	ease of tore	que in a v	vehicle is ol	tained !	bу _				
	(1)	decreasin	_			(2)		power		
	(3)	decreasin	g fuel co	nsumption		(4)	All of the al	oove		
82.	Cylin	nder block	s of IC er	ngines are o	common	ly m	ade of			
	(1) Grey cast iron									
	(2)	Alloy cast	iron (Ni	or Cr as al	lloying e	leme	ent)			
	(3)	Aluminiu	m alloy							
	(4)	All of the	above		<u> </u>					
83.	Com	pression r	atio of pe	trol engine	is in th	e rai	nge of	•		
	(1)	2 to 3								
	(2)	7 to 9								
	(3)	16 to 20								
	(4)	None of t	he above							
84.	The ratio of mass of air (or mixture) retained to the mass of trapped cylinder charge is called as									
	(1)	Trapping	efficienc	ey		(2)	Scavenging	efficier	ıcy	
	(3)	Charging	efficienc	y		(4)	Volumetric	efficien	cy	
85.	Viscosity of an oil tends to deviate from its standard value during operation. Which of the following factors are responsible for such deviation? (1) Temperature and Pressure (2) Degradation of oil additives and presence of oxidation products (3) Both (1) and (2) (4) None of the above									
86.	How many times in a minute does each valve on a 4-stroke engine running at 2000 rpm open and close?									
	(1)	1000	(2			(3)	4000	(4)	6000	
87.	In SI engines, to obtain required firing order									
	(a)	battery is	installe	d.						
	(b)	(b) distributor is installed.								
	(c)	carburett	or is inst	alled.						
	(d) ignition coil is installed.									
	Whi	ch of the a	bove stat	ements is/a	are corre	ct?				
	(1)	(a) only	(2)	(b) only	(3)	(a)	and (c) only	(4) (a), (c) and	d (d) only
किस्स्य	ा कामार	पदी जागा <i>।</i> ९	PACE EC	R ROUGH V	NODK					DTO

88.	Inc	Increase in the compression ratio offers the following advantage:								
	(1)	Increased load carrying capacity	7							
	(2)	Increased engine power								
	(3)	Increased speed and enhanced economy								
	(4)	All of the above								
89.	Excess air factor is									
	(1)	the ratio of stoichiometric to actual air/fuel ratio								
	(2)	the ratio of lean air/fuel to rich a	ir/fuel ra	atio						
	(3)	the ratio of rich air/fuel to lean a	ir/fuel ra	atio						
	(4)	the ratio of actual to stoichiomet	ric air/fu	nel ratio						
90.	Exc	Excessive oil consumption in an automobile is due to								
	(1)	use of low viscosity oil	(2)	defective valve seal						
	(3)	improper piston ring gap	(4)	All of the above						
91.	In a	4-cylinder petrol engine, the stan	dard firi	ng order is						
	(a)	1 - 2 - 3 - 4								
	(b)	1 - 4 - 2 - 3								
	(c)	1 - 3 - 2 - 4								
	(d)	1 - 3 - 4 - 2								
	Which of the above is/are correct?									
	(1)	(a) only	(2)	(a) and (b) only						
	(3)	(a), (b) and (c) only	(4)	(d) only						
92.	The detachable dry liner in the form of plain sleeve is pressed into the cast iron or aluminium alloy cylinder block with									
	(1)	clearance fit	(2)	shrink fit						
	(3)	transition fit	(4)	interference fit						
93.	Volu	metric efficiency of LPG fuelled er	ngine is i	mproved by						
	(1)	Increasing the size of the induction	on tracts							
	(2)	Increasing the inlet pressure with	h turbocl	narger or supercharger.						
	(3)	Increasing the size of valves.								
	(4)	All of the above								
		•								

94.	The net work per cycle done by the piston on the cylinder gases during the inlet and exhaust stroke is called as								
	(1) Pumping work								
	(2)	(2) Rubbing friction work							
	(3) Accessory work								
	(4)	Total friction work							
95.		P of a four-stroke petrol engine is 28 kW and mechanical efficiency is 80%, then s							
	(1)	3·5 kW							
	(2)	35 kW							
	(3)	22·4 kW							
	(4)	None of the above							
96.	A P	N diode, when working as a switch, has ideally							
	(1)	Zero resistance when ON and infinite resistance when OFF.							
	(2)	Zero resistance when OFF and infinite resistance when ON.							
	(3)	Identical resistance when ON or OFF.							
	(4)	None of the above							
97.	P-N	junction diode is operated in							
	(1)	Reverse Biased Condition							
	(2)	Forward Biased Condition							
	(3)	Both in Forward and Reverse Biased Condition							
	(4)	Other than all the above conditions							
98.	The	UJT will produce an output pulse when							
	(1)	the voltage across \mathbf{B}_2 – \mathbf{E} exceeds the break over voltage level							
	(2)	the voltage across $B_1 - E$ exceeds the break over voltage level							
	(3)	the voltage across $B_1 - B_2$ exceeds the break over voltage level							
	(4)	None of the above							

99.	UJT, when connected as a Relaxation Oscillator, is used to trigger										
	(1)	Diode			(2)	BJT					
	(3)	SCR			(4)	Any of th	ne above				
100.	The	common base	amplif	ier has		_			_		
	(1)	(1) voltage gain of less than unity but current gain of more than unity.									
	(2) voltage gain of more than unity but current gain of less than unity.										
	(3)	voltage and c	urrent	gains of mo	ore than u	nity.					
	(4)	voltage and c	urrent	gains of les	s than un	ity.					
101.		pias the transis				tter base ju	unction is		while		
	(1)										
	(2)										
	(3)										
	(4)	Forward bias	ed, Fo	ward biase	d						
102.	$V_{o} =$	age gain of an Output voltag		p is given t				i = Input vo	oltage,		
		$A_v = V_o V_i$				$A_v = V_i / V_i$					
	(3)	$A_v = V_o / V_i$			(4)	$A_{v} = V_{i} +$	V_{o}				
103.		at is the curre 0.9 mA?	nt gair	n for a con	ımon base	e configura	ition when	$I_{\rm E} = 1 \text{m}$	A and		
	(1)	0.9	(2)	1.11	(3)	10	(4)	9			
104.		term ne destination o			croprocess	or termino	logy, ident	tifies the lo	cation		
	(1)	CPU	(2)	ALU	(3)	Hex	(4)	Address			
105.	The	definite time ta	aken b	y a micropro	ocessor to	perform a	specific tas	sk is called t	the		
	(1)	Machine cycle	!		(2)	Fetch cycl	le				
	(3)	Instruction cy			(4)	Clock cycl					

- 106. Two bars of different materials and same size are subjected to the same tensile force. If the bars have unit elongation in the ratio of 2:5, then the ratio of modulus of elasticity of the two materials will be
 - (1) 2:5
- (2) 5:2
- (3) 4:3
- (4) 3:4

- **107.** Which of the following is a proper sequence?
 - (1) Proportional limit, Elastic limit, Yielding, Failure
 - (2) Elastic limit, Proportional limit, Yielding, Failure
 - (3) Yielding, Elastic limit, Proportional limit, Failure
 - (4) Yielding, Proportional limit, Failure, Elastic limit
- 108. If τ is the uniform shear stress developed in a material having modulus of rigidity 'G', what is the strain energy stored in the material?
 - (1) $U = \frac{1}{2} \times \tau^2 \times Volume$
- (2) $U = \frac{1}{2} \times \frac{\tau^2}{G} \times Volume$

(3) $U = \frac{\tau^2}{2G} \times Area$

 $(4) \quad \mathbf{U} = \frac{1}{2} \times \frac{\tau^2}{\mathbf{G}}$

- 109. Strain energy is the
 - (1) energy stored in a body when strained within elastic limits.
 - (2) energy stored in a body when strained up to the breaking of a specimen.
 - (3) the maximum energy that can be stored in a body.
 - (4) modulus of toughness of a material.
- 110. When shear force at a point is zero, then bending moment at that point will be
 - (1) Zero
- (2) Minimum
- (3) Maximum
- (4) Infinity
- 111. When the shear force diagram is a parabolic curve between two points, it indicates that there is a
 - (1) uniformly varying load between the two points.
 - (2) uniformly distributed load between the two points.
 - (3) point load at the centre of the two points.
 - (4) point load at the two points.
- 112. The bending stress in a beam is ______t

_____ the bending moment.

(1) equal to

(2) less than

(3) more than

(4) directly proportional to

F14					20								A
113.	A beam of length 'L' and coefficient of thermal expansion 'α' is fixed at two exists without stress. If the temperature of the beam is dropped by T°C, what is the aforce developed in the beam?									two e the a:	nds xia		
	(1)	AEαT (Tensil	e)			(2)	$\frac{AE}{\alpha T}$	(Tensi	ile)				
	(3)	AαTE (Comp	ressive	;)		(4)	$\frac{AE}{\alpha T}$	(Comp	oressive)				
114.	The (1) (2) (3) (4)	unit of modulu stress, strain stress, force a strain, force a stress, pressu	and prond mo	ressure. dulus of r essure.	rigidity	7.	ose of						
115.	tens	it of eccentricition condition is $\leq \frac{1}{6} d$	3	_								d) for	no
116.	The	equivalent len	gth of	a column	(<i>l</i>) sup	porte	d firm	ly at b	oth ends	is			
	(1)	-	(2)	7		(3)	7		(4)				
117.	Torq (τ) is	ue transmitted	l by a	solid shat	ft of di	amete	er (D),	when s	subjected	l to a	a she	ar str	ess
	(1)	$\frac{\pi}{16} \times \tau \times D^2$				(2)	$\frac{\pi}{16}$ ×	$\tau \times D^3$					
	(3)	$\frac{\pi}{32} \times \tau \times D^2$				(4)	$\frac{\pi}{32}$ ×	$\tau \times D^3$					
118.		thin cylindr							pressure	p,	the	ratio	of
	(1)	$\frac{1}{2}$	(2)	$\frac{3}{4}$		(3)	1		(4)	2			
119.	Theo	rem of perpen	dicular	axis is u	sed in	obtai	ning t	he mon	nent of ir	- ıerti	a of	a	

- Semicircular lamina **(1**)
- Square lamina (2)

Circular lamina

- (4)Triangular lamina
- The strain energy density of a material when it is stressed to the proportional limit **120.** is called as
 - (1) Modulus of elasticity
- Modulus of resilience (2)

Shear modulus

Modulus of toughness (4)

विभाग 'ब'

121.	The	capacity of a domestic refrigerator is	in the	e range of
	(1)	0·1 to 0·2 TR	(2)	1 to 2 TR
	(3)	2 to 3 TR	(4)	3 to 4 TR
122.	The	condition of refrigerant at the inlet t	o the	compressor should be
	(1)	wet	(2)	dry
	(3)	slightly superheated	(4)	None of the above
123.		ondenser of a refrigeration system appressor consumes power of 30 kW. To 0.25 (2) 0.33	-	s heat at a rate of 120 kW, while its fficient of performance is 3 (4) 4
194		refrigerant used in domestic refriger		
124.	(1)	R134a (2) R600	(3)	R1234yf (4) All of the above
125.	Pota	ato is stored in cold storages at		temperature.
	(1)	14°C	(2)	- 20°C
	(3)	−10 °C	(4)	None of the above
126. Specific humidity is the ratio of mass of water vapour to				vapour to
	(1)	mass of dry air	(2)	mass of dry and moist air
	(3)	mass of dry air in a saturated air	(4)	None of the above
127.	Psy	chrometric chart is drawn with		
	(1)	DBT on x-axis and specific humidit	y on y	-axis
	(2)	DBT on y-axis and specific humidit	y on x	-axis
	(3)	DBT on x-axis and RH on y-axis		
	(4)	None of the above		
128.	Sen	sible Heat Factor (SHF) is the ratio	of	
	(1)	Sensible heat to total heat	(2)	Total heat to sensible heat
	(3)	Sensible heat to latent heat	(4)	None of the above
129.	Peo	ple feel comfortable for DBT at	a	andRH.
	(1)	22°C, 50%	(2)	30°C, 60%
	(3)	26°C, 45%	(4)	None of the above
130.	The	domestic refrigerator gives the best	perfor	mance in
	(1)	Summer season	(2)	Winter season
	(3)	Rainy season	(4)	All of the above
 कच्च्या	कामार	प्ताठी जागा / SPACE FOR ROUGH WORK		P.T.O.

131.	Wh	en production is 'make to stock' or mass production, suitable layout is					
	(1)	Process layout					
	(2)	Product layout					
	(3)	Fixed layout					
	(4)	Group layout					
132.	The	advantage of product layout is					
	(1)	Line output is decided by bottleneck machine.					
	(2)	Minimum material handling cost.					
	(3)	Change in product may not require the facility modification.					
	(4)	Machines are not shared by different products.					
133.	is concerned with successfully transforming the design into a physical product.						
	•						
	(1)	Process Engineering Metarial Requirement Planning					
	(2)	Material Requirement Planning					
	(3)	Capacity Requirement Planning					
	(4)	None of the above					
134.	Machine output is proportional to the cycle time.						
	(1)	directly					
	(2)	indirectly					
	(3)	inversely					
	(4)	None of the above					
135.		is the application of techniques designed to establish the time for a					
	qua	lified worker to carry out a specific job at a defined level of performance.					
	(1)	Value analysis					
	(2)	Time study					
	(3)	Work measurement					
	(4)	Method study					

136.	The	The quality of the product means								
	(1)	Degree of brightness								
	(2)	Fitness for use								
	(3)	Degree of perfection at any cost								
	(4)) Fitness for use at minimum cost								
137.		is determining the degre	ee of	closeness of the relationship b	etween					
	vari	ables.								
	(1)	Regression analysis	(2)	Correlation analysis						
	(3)	Exponential smoothing method	(4)	Least square method						
138.		is the maximum percent	defec	tive that, for the purpose of sa	mpling					
	insp	pection, can be considered as a proces	s aver	rage.						
	(1)	AQL	(2)	AOQL						
	(3)	LTPD	(4)	ABC						
139.	Bas	sic shafts have upper deviation								
	(1)	Positive	(2)	Negative						
	(3)	Zero	(4)	All of the above						
140.	For	For clearance fit between shaft and bearing								
	(1)	Lower limit on the hole should be g	reate	than upper limit on the shaft.						
	(2)	Lower limit on the hole should be s	malle	r than upper limit on the shaft.						
	(3)	Upper limit on the hole should be s	malle	r than lower limit on the shaft.						
	(4)	Lower limit on the hole should be s	malle	r than lower limit on the shaft.	_					
कच्च्य	ा कामार	साठी जागा / SPACE FOR ROUGH WORK			PTO					

141. The pressure head due to acceleration in the suction pipe (has) of reciprocating pump is given by where,

A = Area of pump

 ω = Angular velocity

a = Area of pipe

L = Length of pipe

and subscript 's' stands for suction.

$$(1) \quad \frac{L_s}{g} \times \frac{A}{a_s} \!\! \times \! \omega_r \cos \theta$$

$$(2) \quad \frac{L_s}{2g} \times \frac{A^2}{a_s} \times \omega_r \cos\theta$$

$$(3) \quad \frac{L_s}{2g} \times \frac{A}{a_s} \times \omega_r^2 \, \cos \theta$$

- (4) None of the above
- 142. Head developed by a centrifugal pump depends on
 - Impeller diameter and speed
 - (2) Fluid density
 - (3) Type of casing
 - (4) All of the above
- 143. Axial flow pump is started with its delivery valve
 - (1) kept fully closed

- (2) kept fully open
- (3) irrespective of any position
- (4) None of the above
- **144.** Multistage centrifugal pumps are used to obtain
 - (1) High discharge

- (2) High head
- (3) High head and high discharge
- (4) High efficiency
- 145. A valve, when in centre position directs the pump flow to reservoir port with the other two working ports closed. This is known as ______.
 - (1) Open centre position
 - (2) Closed centre position
 - (3) Tandem centre position
 - (4) Five-way three-position valve

146. Specific speed of a turbine is indicated as

 $(1) \quad \frac{N\sqrt{Q}}{H^{3/4}}$

 $(2) \quad \frac{N\sqrt{P}}{H^{5/4}}$

 $(3) \quad \frac{N\sqrt{P}}{H^{3/4}}$

 $(4) \quad \frac{N\sqrt{P}}{H^{3/2}}$

147. Power required to drive a centrifugal pump is proportional to

(1) Speed, N

 $(2) \quad N^2$

(3) N^3

(4) $1/N^2$

148. In Kaplan turbine runner, the number of blades is generally of the order

(1) 4-8

(2) 8 – 16

(3) 16-24

(4) 24-32

149. Saving of work done and power by fitting an air vessel to a single acting reciprocating pump is of the order of

(1) 49.2%

(2) 68.8%

(3) 84.8%

(4) 91.6%

150. The angle of taper on the draft tube is

- (1) less than 3°
- (2) less than 8°
- (3) greater than 15°
- (4) greater than 8°

विभाग 'क'

151.	High performance sports car with active exhaust system allows (1) larger flow area, reduces the restriction in the exhaust system									
	(2)	(2) to maintain the flow area without affecting the restriction in the exhaust system								
	(3) smaller flow area, reduces the restriction in the exhaust system									
	(4)	None of the above								
152.	If the fuel consumption of 4-stroke IC engine is 0·1 kg/min and calorific value of fuel									
	used	d is 40,000 kJ/kg, then	the amount	of energy	supplied	per minute	is			
	(1)	66·67 kJ	(2)	666∙7 kJ						
	(3)	4,000 kJ	(4)	400 kJ						
 153.	The number of amperes that the battery can deliver for 30 seconds at -18° C without cell voltage falling below 7.2 volts is called the									
	(1)	Charging rate	(2)	Reserve c	apacity					
	(3)	Cold-cranking rate	(4)	Ampere-h	our rate					
154.	Disl	Disk brakes self-adjust when lining wear allows the piston to								
	(1)	Slide outward of the seal ar	nd take new p	osition close	er to the dis	sc				
	(2)	Slide inward of the seal and	d take new po	sition closer	to the disc	2				
	(3)	Slide both sides of the seal	and take new	position clo	ser to the d	lisc				
	(4)	None of the above								
155.	For	tightening cylinder head bolt	ts, it is prefer	able to use		•	_			
	(1)	Open-ended spanner								
	(2)	(2) Torque wrench								
	(3)	Ring spanner								
	(4)	Adjustable spanner								
		THE THE LEDACE FOR BOLICH	WORK							

156.	Purging of the charcoal canister occurs when								
	(1)	air flow from the fuel tank flows through the canister.							
	(2)	air flows from the float bowls through the canister.							
	(3) air flows through the canister on its way to the intake manifold.								
	(4)	air flows through the canister on its way to the exhaust manifold.							
157.	The	The radial tyre provides better fuel economy than a bias ply tyre because							
	(1)	Radial tyre has less rolling resistance							
	(2)	Bias ply tyre has less rolling resistance							
	(3)	Radial tyre has more rolling resistance							
	(4)	Bias ply tyre has more rolling resistance							
158.	Removing the glaze from cylinder walls before installing new piston rings helps avoid								
	(1) quick seating of the piston rings								
	(2)	engine overheating							
	(3)	excessive friction							
	(4)	slow seating of the piston rings							
159.	The brake specific fuel consumption is expressed as the fuel consumed								
	(1)	per unit time							
	(2)	per hour per unit brake horsepower							
	(3)	per km distance covered							
	(4)	per hour per unit indicated horsepower							
160.	Why	y are the pistons usually given a coating (e.g. tin coating)?							
	(1)	To increase lubrication effect							
	(2)	To conduct heat efficiently							
	(3)	To reduce weight							

(4) To reduce possibility of scoring

161.	As per the	Motor Vehi	icles Ac	t, 1988,	a pe	rso	n eng	gaged	in o	collecti	ng fares	from
	passengers,	regulating	their e	ntrance	into	\mathbf{or}	exit	from	the	stage	carriage	and
	performing	such other fi	unctions	is called	ŀ							

(1) Driver

(2) Conductor

(3) Labour

(4) None of the above

162. Nishu, a teenager, has attained 16 years of age. According to the Motor Vehicles Act, 1988, he is permitted to drive a 2-wheeler named as

(1) Honda of Japan

(2) TVS Champ 60

(3) Atlas-Honda of Pakistan

(4) Hero-Honda of India

163. A Chevrolet Impala car bears registration number BY 4097. In which State is this car registered and what is the likely year of its registration?

- (1) Bihar, around 1979 89
- (2) Andaman and Nicobar Islands, after 1990
- (3) Maharashtra, before 01-10-1961
- (4) None of the above

164. The traffic sign of "cross roads" is shown on a roadside. Its indication to the driver is to

- (1) slow down and proceed cautiously.
- (2) stop.
- (3) keep special vigil on the traffic.
- (4) drive at 20 kmph.

165. A road has no provision of pedestrian movement on its parallel side. While moving on it, safety demands that the pedestrians movement should be

- (1) on right side of the road, i.e., facing the incoming traffic.
- (2) on left side of the road, i.e., along the traffic.
- (3) in the middle of the road.
- (4) None of the above

166.		means a motor vehicle specially designed and constructed, and not									
	mer	ely adapted, for the use of a pers	on su	ffering from some physical defect or							
	disability, and used solely by or for such a person.										
	(1)	Invalid carriage									
	(2)	(2) Articulated vehicle									
	(3) Tractor										
	(4)	(4) None of the above									
167.	"He	avy Passenger Motor Vehicle" means	any _l	public service vehicle or private service							
	veh	vehicle or educational institution bus or omnibus, the gross vehicle weight of any of									
	whi	which, or a motor car, the unladen weight of which exceeds									
	(1)	$15{,}000~\mathrm{kg}$	(2)	$12,000~\mathrm{kg}$							
	(3)	10,000 kg	(4)	8,000 kg							
168.	No person shall be granted a conductors license unless he has passed										
	(1)	(1) Secondary School Certificate exam or an equivalent or higher exam.									
	(2)	(2) XI th exam or an equivalent exam.									
	(3)	(3) VIII th exam.									
	(4)	VII th exam.									
169.	A te	emporary certificate of registration is	valid	for a period not exceeding							
	(1)	One month	(2)	One year							
	(3)	Two years	(4)	Six months							
170.	The	Bombay Motor Vehicles Tax Act, 19	58 bec	came effective from							
	(1)	01-01-1958	(2)	01-04-1958							
	(3)	01-07-1958	(4)	31-12-1957							
कच्च्या	कामार	साठी जागा / SPACE FOR ROUGH WORK		P.T.O.							

171.	If a force of 10 units is applied to the master cylinder of an automotive brake system which uses wheel cylinder piston of 5 square units surface area, then the output force at wheels will be									
	(1)	10 units	(2)	15 units						
	(3)	50 units	(4)	Cannot be estimated						
172.	The problem of a gradual torque take-up when the vehicle is moving away from a standstill has been overcome with									
	(1)	(1) the introduction of fluid coupling between engine and gear box.								
	(2) the introduction of epicyclic gear box between engine and final drive.									
	(3) the introduction of torque converter between engine and transmission gears.									
	(4)	None of the above								
173.	The advantages of using helical gears rather than spur gears in a transmission system are									
	(1) High strength and low cost									
	(2) High strength and less end thrust									
	(3) High strength and low noise level									
	(4)	(4) Low noise level and economical								
174.	Engine torque fluctuations in a typical single plate clutch are absorbed by									
	(1)	pressure plate	(2)	cushion springs						
	(3)	torsional springs	(4)	pressure springs						
 175.	Coupling efficiency is the ratio of the									
	(1)	power available at the turbine	to the amo	unt of power supplied to the impeller.						
	(2)	power available at the impelle	r to the am	ount of power supplied to the stator.						
	(3)									
	(4) None of the above									
	குமு		ORK							

176.	Fading of brakes occurs	
	(1)	at high speed
	(2)	at low speed
	(3)	during continuous application
	(4)	when brake lining is worn out
177.	Automotive damper works on the principle of	
	(1)	metallic friction
	(2)	viscous damping
	(3)	fluid gravity
	(4)	electromagnetic induction
178.	The frame may get distorted to a parallelogram shape due to	
	(1)	weight of vehicle
	(2)	weight of the passengers
	(3)	cornering force
	(4)	wheel impact with road obstacles to one side of vehicle
179.	When two rubber blocks are inclined to each other to a 'V' mounting, the rubber will	
	be loaded in	
	(1)	only compression force
	(2)	both compression and shear forces
	(3)	only shear force
	(4)	None of the above
180.	The ratio of angle turned by steering wheel to corresponding turning angle of the	
	stub axle is called as	
	(1)	steering ratio
	(2)	movement ratio
	(3)	slip angle ratio
	(4)	thrust angle ratio

सूचना 🗕 (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

Q.No. 201. The Catch varies inversely with the size of the:

(1) nozzle

(2) droplet

(3) obstruction

(4) sprayer

ह्या प्रश्नाचे योग्यं उत्तर ''(3) obstruction'' हे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. आता खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''③'' हे वर्तुळ खालीलप्रमाणे पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्र.क. 201.

1 2

4

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK