सहायक मोटर वाहन निरीक्षक -2002

CODE : SMG 7.23.3.2002 ууну (клан жиіа 2001

प्रश्नपुस्तिका

वेळ : १<mark>२</mark> (दीड) तास

यंत्र अभियांत्रिकी

एकुण प्रश्न : १५०

एकण गुण: ३००

सुचना

1) <u>सदर प्रश्नपुस्तिकेत १५० अनिवार्य प्रश्न आहेत.</u> उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष असल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

2) आपला परीक्षा-क्रमांक ह्या चौकोनात न विसरता बॉलपेनने लिहावा.

परीक्षा-क्रमांक						
	केंद्राच संकेता				ी घटचा अंक	•

- 3) दर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद
- 4) (अ) या प्रश्नपुरितकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमुद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी, ह्याकरिता फक्त निळया वा काळया शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
 - (ब) आयोगाने ज्या विषयासाठी मराठी-इंग्रजी माध्यम विहित केलेले आहे. त्या विषयाचा प्रत्येक प्रश्न मराठी बरोबर इंग्रजी भाषेत देखील छापण्यात येईल. त्यामधील इंग्रजीतील किंवा मराठीतील प्रश्नामध्ये मुद्रणदोषांमुळे अथवा अन्य कारणांमुळे विसंगती निर्माण झाल्याची शंका आल्यास, उमेदवाराने संबंधित प्रश्न पर्यायी भाषेतील प्रश्नाशी ताडून पहावा.
- 5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण *एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न* **घालविता पुढील प्रश्नाकडे वळावे.** अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- 6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार
- 7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. त्या प्राप्त गुणांतून त्यांनी उत्तरपत्रिकेत चुकीची उत्तरे नमूद केल्याबद्दल गुण वजा केले जाणार नाहीत.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाया गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम -82'' यातील तरतृदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एका वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

CODE: SMG

CODE: SMG

- 8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिके व्यतिरिक्त-उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एका वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- 9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. <u>मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपली उत्तरपत्रिका समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.</u>
- 10) या प्रश्नपुस्तिकेतील प्रश्नांमध्ये काही दोष आढळल्यास, त्यासंबंधी उमेदवाराने अधिप्रमाणित (Authentic) स्पष्टीकरण/ पंदर्भ देऊन आपले लेखी निवेदन आयोगाच्या परीक्षा नियंत्रकांकडेच स्वत:च्या तपशीलासह टपालाने सादर करावे. <u>याबाबत पर्यवेक्षक/समवेक्षक इत्यादींकडे विचारणा करू नये</u>.आयोगाकडे सदर परीक्षेच्या दिनांकापासून 8 दिवसांपर्यंत पोहोचलेल्या लेखी निवेदनाची फक्त दखल घेतली जाते. तद्नंतर आलेली निवेदने विचारात घेतली जात नाहीत. तसेच उशिरा वा वेळेत आलेल्या निवेदनाबद्दल कोणताही पत्रव्यवहार केला जात नाही.

नमुना प्रश्न

π έκ 201	What is the minimum	number of naire	manipad to form	a kinatmatic chain ?
7. X1. ZU 1.	vinai is the minimum	number of pairs	required to form	i a Kniemiani Chani:

- (1) Two (2) Three (3) Six (4) Four
- ह्या प्रश्नाचे योग्य उत्तर '' (3) Six" असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. यास्तव खालीलप्रमाणे प्र. क्र. 201 समोरील उत्तर क्रमांक ''[3]'' चा कंस पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.
- я. 201. [1] [2] [4]

या-पद्धती-ने या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक तुम्हाला स्वतंत्ररित्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्रश्नक्रमांकासमोरील संबंधित कंस पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त निळया वा काळया शाईचे बॉलपेन वापरावे. पेन्सिल वा शाईचे पेन वापरू नये.

पर्यवेक्षकांच्या सूचनेविना हे पृष्ठ उलटू नये

CODE: SMG

कच्च्या कामासाठी जागा SPACE FOR ROUGH WORK

MECHNICAL ENGINEERING

1.		eel rod of 20 mm diameter and 500 = 2 x 10 ⁵ N/mm ² , the elongation of		long is subjected to an axial pull of 30 kN. od will be
	(1)	0.239 mm	(2)	0.0239 mm
	(3)	0.00239 mm	(4)	23.9 mm
2.	Wha load (1) (3)	t is the strain in a bar having cros? Assume Young's Modulus as 2 x 0.001	s-sect 10 ⁵ N (2) (4)	ion area 50 mm ² subjected to 10 kN axial J/mm ² . 0.002 0.01
3.	If the	e end portion of a beam is extended Cantilever beam	l beyo	ond the support, it is known as Continuous beam
	(3)	Overhanging beam	(4)	Fixed beam
4.		ctangular section has 200 mm dep ia about centroidal axis parallel to		
	(1)	$450 \times 10^6 \text{ mm}^4$	(2)	
	(3)	$300 \times 10^6 \text{ mm}^4$	(4)	$600 \times 10^6 \text{ mm}^4$
5.	Secti	on Modulus of a circular cross-sect	ion al	oout its diameter 'D' is given as
	(1)	$\frac{\pi D^4}{16}$		$\frac{\pi D^3}{32}$
	(3)	$\frac{\pi D^4}{32}$	(4)	$\frac{\pi D^4}{64}$
6.		ection of a Cantilever beam, meas sity 'w' over a span 'l' is given as		at its free end, subjected to uniform load
		Young's Modulus; I = Moment of Ir		about Neutral axis)
	(1)	w <i>l</i> ⁴ /6 EI	(2)	$wl^4/8 EI$
	(3)	$wl^4/4EI$	(4)	wl ⁴ /16 EI
7.		t is the slope at the fixed end of a at its free end?	cantil	ever beam, subjected to concentrated load
	(1)	30°	(2)	90°
	(3)	0°	(4)	None
8.	'w' p	ection at the centre of a simply sur er unit length over the entire span ertia "I", is given as	pport 'l' hav	ed beam, with uniformly distributed load ving modulus of elasticity "E" and Moment
	(1)	$\frac{5}{384} \frac{wl^4}{EI}$		$\frac{5}{348} \frac{\text{w}l^4}{\text{EI}}$
	(3)	$\frac{3}{384} \frac{wl^4}{EI}$	(4)	$\frac{7}{384} \frac{wl^4}{EI}$

9.	(E = (1)	er's Buckling load on a column of len Young's Modulus; I = Moment of Ir $\frac{\pi EI}{l^2}$ $\frac{\pi^2 EI}{l^2}$	nertia (2)		
10.	Water main 800 mm in diameter contains water at a pressure load of 120 m. If density of water is 10000 N/m ³ , determine the metal thickness with allowable tensile stress 24 N/mm ² .				
	(1)	10 mm	(2)	20 mm	
	(3)	24 mm	(4)	18 mm	
 11.	Very	thin grinding wheels are made with			
	(1)	Shellac bond	(2)	Rubber bond	
	(3)	Vitrified bond	(4)	Resinoid bond	
12.	Wha (1) (2) (3) (4)	It are the main raw materials required Iron, coal and flux Iron ore, coke and lime stone Iron ore, cooking coal and flux Iron ore, coal and dolomite	ed for	production of pig iron ?	
13.	Wha	at are the main constituents of Babb	itt me	etal used in industry?	
	(1)	Copper-tin-antimony	(2)	Copper-tin-phosphorus	
_	(3)	Copper-tin-nickel	(4)	Copper-zinc-nickel	
14.		ch metal is used for a wide varietyes, ordinance work and belts, rods,		mall components of electrical equipment, etc. ?	
	(1)	Monel metal	(2)	Bell metal	
	(3)	Muntz metal	(4)	Gun metal	
15.	Whi	ch of the following is a chipless mad	hinin	g process ?	
	(1)	Knurling	(2)	Metal spinning	
	(3)	Hobbing	(4)	Lapping	
16.	For niob	which engineering purposes, urani ium and their alloys are primarily u	um, tl	horium, plutonium, zirconium, beryllium,	
	(1)	Electronic Engineering	(2)	Nuclear Engineering	
	(3)	Telecommunication Engineering	(4)	Computer Engineering	

	Which process of metal-working is simply a plastic deformation performed to change shape and dimensions by mechanical pressure?						
	(1)	ECM	(2)	EDM			
	(3)	Extrusion	(4)	Shaping			
18.	Tun	abling is done to					
	(1)	remove blow holes	(2)	create hard surface			
	(3)	clean the casting	(4)	fill-up the blow holes			
19.	What is the temperature of metal in hot working process at which new grains are formed?						
	(1) Below the recrystallisation temperature						
	(2)	Above the recrystallisation temp	erature	•			
	(3)	At melting temperature					
	(4)	Above melting temperature					
20.		ndrawal of the pattern from the sa sible by providing	ınd of t	the mould, without breaking the mould, is			
	(1)	shrinkage allowance	(2)	draft			
	(3)	rapping allowance	(4)	finish allowance			
21.		process used for making large- els, is	diamet	er pipes, hollow propeller shafts or gun			
	(1)	Centrifugal casting	(2)	Forging			
	(3)	Rolling	(4)	Die-casting			
22.		ch heat treatment is applied to	remo				
	Prof	perties and increase machinability		ve stresses and improve the mechanical			
	(1)	perties and increase machinability Normalising		ve stresses and improve the mechanical Hardening			
		•	?	•			
23.	(1) (3) Wha	Normalising Tempering	? (2) (4)	Hardening			
23.	(1) (3) Wha	Normalising Tempering at are the two basic ways of meta	? (2) (4) al cuttin	Hardening Annealing			
23.	(1) (3) Wha	Normalising Tempering at are the two basic ways of metali-point cutting tool?	? (2) (4) al cutting	Hardening Annealing			
23.	(1) (3) What mul (1)	Normalising Tempering at are the two basic ways of metati-point cutting tool? "Single" and "multi-direction" cut	? (2) (4) al cutting	Hardening Annealing			
23.	(1) (3) What mul (1) (2)	Normalising Tempering at are the two basic ways of metati-point cutting tool? "Single" and "multi-direction" cut "Perpendicular" and "Oblique" cu	? (2) (4) al cutting ting utting	Hardening Annealing			
23.	(1) (3) What mul (1) (2) (3) (4)	Normalising Tempering at are the two basic ways of metati-point cutting tool? "Single" and "multi-direction" cut "Perpendicular" and "Oblique" cutti "Orthogonal" and "Straight" cutti	(2) (4) al cutting utting ng ng	Hardening Annealing			
	(1) (3) What mul (1) (2) (3) (4)	Normalising Tempering at are the two basic ways of metati-point cutting tool? "Single" and "multi-direction" cut "Perpendicular" and "Oblique" cutti "Orthogonal" and "Oblique" cutti "Orthogonal" and "Straight" cutti	(2) (4) al cutting utting ng ng	Hardening Annealing ng using a single-point cutting tool and a			

25.	In metric standard, reciprocal of circular pitch of spur gear is described as						
	(1) Addendum	(2)	Dedendum				
	(3) Module	(4)	Backlash				
26.	Study the following statements :						
	A – Tailstock of Engine-Lathe is replaced by turret in turret lathe						
	B – Turret lathe is used for very small precision jobs						
	C – Turret lathe can be tape cont	rolled	,				
	(1) A and B are true	(2)	A and C are true				
	(3) B and C are true	(4)	All are true				
27.	A method of grinding external camong a regulating wheel, grinding	ylindrical g wheel ar	surfaces, in which the work is supported a work rest blade, is known as				
	(1) Snagging grinding	(2)	Cylindrical grinding				
	(3) Centreless grinding	(4)	Form grinding				
28.	Small internal gear teeth are cut in edges equal to the number of teeth		ration by a tool having a number of cutting ar. Name the tool.				
	(1) Milling tool	(2)	Hobbing tool				
	(3) Broaching tool	(4)	Reaming tool				
29.	The device, used for dividing the equal parts, is	periphery	of the gear blank into a desired number of				
	(1) Combination head	(2)	Dividing head				
	(3) Multiple head	(4)	Periphery head				
30.	It is essential to do annealing and pickling, after performing						
	(1) drilling	(2)	grinding				
	(3) metal spinning	(4)	broaching				
31.	The number of collars are provide	d to carry	a fixed axial load in a flat collar bearing				
	(1) to reduce frictional torque	(2)	to increase frictional torque				
	(3) to increase intensity of pressu	are (4)	to decrease intensity of pressure				
32.	For the same pitch, the efficiency of	of screw ja	ck with square threads is				
	(1) more than that with V-thread	,	less than that with V-threads				
	(3) same as that with V-threads		dependent only on the load on the jack				
33.	The friction acting on body while i	n motion	is called				
50.	(1) Static friction	(2)	Dry static friction				
	(3) Dynamic friction	(4)	Static and dynamic friction				
	\ / = J = = = = = = = = = = = = = = = = =	(-)	z military m				

34.	. Hartnell governor is							
	(1)	Spring-loaded type governor						
	(2)	Dead-weight-loaded type govern	or					
	(3)	(3) Pendulum type governor						
	(4)	Inertia governor						
35.	For	the same mass of flywheel						
	(1)	the disc type flywheel is preferab	le					
	(2)	the rim type flywheel is preferabl	.e					
	(3)	(3) preference will depend upon the type of the prime mover						
	(4)	any type is equally preferable						
36.	For is m		ergy o	of a flywheel, if the mean speed of rotation				
	(1)	the size of the flywheel is reduced	f					
	(2)	the size of the flywheel is increas	ed					
	(3)	the size of the flywheel is not dep	ender	nt on the speed and is unaffected				
	(4)	working is safer						
37.	Ang	Angular acceleration of a link AB is found by dividing the						
	(1)	centripetal component of accelera	ation o	f B relative to A by length AB				
	(2)	, ,						
	(3)	total acceleration of B relative to	A by l	ength AB				
	(4)	tangential component of accelera	tion of	B relative to A by length AB				
38.		nedy's theorem states that, if antaneous centres lie on	three	rigid links have plane motion, their				
	(1)	a triangle	(2)	a point				
	(3)	a straight line	(4)	none of the above				
39.	A bo	olt and nut forms						
	(1)	a turning pair	(2)	spherical pair				
	(3)	sliding pair	(4)	screw pair				
40.		motion of a rotating shaft in foot s nematic pair	step be	earing, constitutes between the elements of				
	(1)	successfully constrained motion						
	(2)	completely constrained motion						
	(3)	incompletely constrained motion						
	(4)	unsuccessfully constrained motio						
		·						

9 P.T.O.

41.	A perfect fluid is (1) compressible and gaseous (3) incompressible and frictionless	(2) (4)	a real fluid one which obeys perfect gas laws			
42.	Continuity equation deals with the law (1) mass (3) energy	w of co (2) (4)	nservation of momentum none of the above			
43.	Select the correct statement. (1) Absolute pressure = (Gauge pressure – Atmospheric pressure) (2) Gauge pressure = (Absolute pressure – Atmospheric pressure) (3) Absolute pressure = (Atmospheric pressure + Vacuum pressure) (4) Gauge pressure = (Atmospheric pressure + Vacuum pressure)					
44.	All fluids exert (1) pressure in the direction of flow only (2) pressure in the direction of force of gravity (3) equal pressure in all directions (4) equal pressure only in <i>x</i> , <i>y</i> and <i>z</i> planes					
45.	A fluid is a substance that (1) always expands until it fills any container (2) is practically incompressible (3) cannot remain at rest under action of any shear force (4) cannot be subjected to shear force					
46.	A pump is a device which converts (1) hydraulic energy into mechanical energy (2) mechanical energy into hydraulic energy (3) kinetic energy into mechanical energy (4) none of the above					
47.						
48.	The casing of a centrifugal pump is m (1) to reduce hydraulic losses (2) to convert kinetic energy into pre (3) to convert pressure energy into k (4) to facilitate priming	ssure e	nergy			

49.	High head of wa	ater is required for					
	(1) Francis tur	bine	(2)	Propeller turbine			
	(3) Pelton who	Pelton wheel		Kaplan turbine			
50.	The relation between hydraulic efficiency (η_h) ; mechanical efficiency (η_m) and overall efficiency (η_o) is						
	$(1) \eta_h = \eta_o x$	η_{m}	(2)	$\eta_o = \eta_h \times \eta_m$			
	(3) $\eta_o = (\eta_m)$	/ η _h)	(4)	None of the above			
51.	The primary fue	l used in nuclear powe	er plan	t is			
	(1) U ₂₃₅		(2)	U ₂₃₈			
	(3) P ₂₃₉		(4)	P ₂₃₃			
52.	Which of the following is <u>not</u> a non-conventional energy source ?						
	(1) Solar energ	sy	(2)	Wind energy			
	(3) Coal		(4)	Bio-gas			
53.	Capital and generation cost of geothermal power plant is (1) more than those of nuclear power plant (2) more than those of steam power plant (3) more than those of hydel power plant (4) least among the types mentioned above						
54.	Standard value of the solar constant is						
	(1) 1353 W/n	n^2	(2)	1353 kW/m^2			
	(3) 1000 W/m	n^2	(4)	1353 MW/m ²			
55.	Direct energy conversion system include						
	(1) Magnetoh	ydrodynamic system	(2)	Geothermal system			
	(3) Tidal pow	er system	(4)	None of the above			
56.	Wind energy is actually put into use in Maharashtra at						
	(1) Deogad		(2)	Pune			
	(3) Nagpur		(4)	Mumbai			
57.	Which of the fo present?	llowing is the most in	ıportaı	nt commercial source of energy in India at			
	(1) Solar energ	gy	(2)	Oil			
	(3) Coal		(4)	Uranium			

58.	The process of supplying the intake air to the engine cylinder, at a density greater than the density of surrounding atmospheric air, is known as						
	(1)	Supercharging	(2)	Scavenging			
	(3)	Detonation	(4)	None of the above			
59.	Ene	rgy may be defined as					
	(1)	A "push" or "pull"					
	(2)	The product of force and velocity					
	(3)	The capacity to do work					
	(4)	The product of mass and accelera	tion				
60. Which of the following is NOT a thermal prime mover?							
	(1)	Water turbine	(2)	Steam turbine			
	(3)	Gas turbine	(4)	Petrol engine			
61.	In a	Theoretical Rankine cycle, expansion	on is a	ssumed to be			
	(1)	polytropic	(2)	hyperbolic			
_	(3)	isentropic	(4)	isothermal			
62.	For C.I. Engines, the compression ratio is in the range of						
	(1)	5 to 9	(2)	12 to 20			
	(3)	1 to 2	(4)	none of the above			
63.	A sh	ort chimney is provided for					
	(1)	Lancashire Boiler	(2)	Babcock and Wilcox Boiler			
	(3)	Locomotive Boiler	(4)	Cochran Boiler			
64.	The	weight of the cliesel engine, compar	ed to	similar petrol engine is			
	(1)	2 to 3 times greater	(2)	2 to 3 times smaller			
	(3)	almost equal	(4)	none of the above			
65.	Of th	ne following <u>four</u> fuels, the highest	calori	fic value is possessed by			
	(1)	Kerosene	(2)	Diesel			
	(3)	Petrol	(4)	Vegetable oil			
66.	The	S.I. Engines are high speed engines	with o	operating speeds in the range of			
	(1)	1000 to 2000 r.p.m.	(2)	3000 to 5000 r.p.m.			
	(3)	10000 to 12000 r.p.m	(4)	none of the above			

67.	67. Which one is the low-pressure steam generator?			
	(1)	Benson steam generator	(2)	Loeffler steam generator
	(3)	Volex steam generator	(4)	none of these
68.	Con	npression ratio for compressor is al	ways	
	(1)	more than 1.0	(2)	less than 1.0
	(3)	equal to 1.0	(4)	zero
69.	Con	npressor capacity is expressed in		
	(1)	m ³ /kg	(2)	KW
	(3)	KWh	(4)	m ³ /min
70.	In a	compressor, the clearance volume i	s kep	t minimum, because it affects
	(1)	isothermal efficiency	(2)	compressor efficiency
	(3)	volumetric efficiency	(4)	none of the above
71.	The	performance of a reciprocating con	npress	sor is expressed by
	(1)	adiabatic work	-	
	(2)	isothermal work		
	(3)	isothermal work/indicated work		
	(4)	none of the above		
72.	Air	conditioning controls		
	(1)	temperature only	(2)	humidity only
	(3)	motion of air and humidity	(4)	All the above three factors
73.	In a	multi-stage compression with interc	coolin	g, work required is
	(1)	reduced	(2)	increased
	(3)	not changed	(4)	none of the above
74.	In a	double acting compressor, the air is	s com	pressed
	(1)	in a single cylinder		
	(2)	in two cylinders		
	(3)	in two stages on one side		
	(4)	in a single cylinder on both sides		
75.	In a	compressor, the volume of air suck	ed du	aring the suction stroke is known as
	(1)	free air delivered	(2)	swept volume
	(3)	compressor capacity	(4)	none of the above
	(-)	1 1 1	` /	

13

76.	The ratio of delivery pressure to suction pressure of air is called						
	(1)	volumetric efficiency	(2)	expansion ratio			
	(3)	compression efficiency	(4)	compression ratio			
77.	In a	In a two-stage air compressor, an intercooler is placed					
	(1)	before L.P. cylinder					
	(2)	after H.P. cylinder					
	(3)	in between L.P. and H.P. cylinder					
	(4)	none of the above					
78.	1 to	n of refrigeration is the					
	(1)	mass of refrigerant flow per secon	nd				
	(2)	mass of refrigeration unit					
	(3)	rate of ice formed per second					
	(4)	heat extraction at a rate of 3.5 kJ	per se	econd			
7 9.	A ho	ouse-hold refrigerator works on					
	(1)	vapour absorption cycle	(2)	vapour compression cycle			
	(3)	Carnot cycle	(4)	Bell-Coleman cycle			
80.		voltage required to produce a spa	ırk be	tween the spark points in spark plug is in			
	(1)	2 to 4 kV	(2)	5 to 5.5 kV			
	(3)	6 to 10 kV	(4)	12 to 15 kV			
81.	The ratio of heat extracted from refrigerant to work supply is called						
	(1)						
	(2)	coefficient of performance of refri	gerato	or			
	(3)	refrigeration efficiency					
	(4)	relative coefficient of performance	e				
82.	Wha	What is the refrigerant used in a house-hold refrigerator ?					
	(1)	Freon-22	(2)	Freon - 11			
	(3)	Freon-12	(4)	NH ₃			
83.	Bell	-Coleman cycle is a	1				
	(1)	reversed Carnot cycle	(2)	reversed Joule cycle			
	(3)	reversed Otto cycle	(4)	none of the above			

84.	The C.O.P. of a one-ton VCC refrigerating machine is 3.5. The minimum power needed to run this machine would be													
	(1)	1.00 HP	(2)	1.00 KW										
	(3)	1.00 KWh	(4)	3.50 KW										
85.	A domestic refrigerator has an expansion device in the form of a/an													
	(1)	(1) Automatic expansion valve												
	(2)	Hand operated expansion valve												
	(3)	Float valve												
	(4)	Capillary tubes												
86.	A pa	ackage type Air conditioner has a	capaci	ty upto around										
	(1)	1 ton	(2)	100 tons										
	(3)	20 tons	(4)	none of the above										
87.		This reading will be the same in Centigrade and Fahrenheit temperature units.												
	(1)	100°	(2)	-100°										
	(3)	-40°	(4)	40°										
88.	Abs	Absolute humidity is defined as												
	(1)													
	(2)	(2) Weight of water vapour present in 1 Kg of air												
	(3)) Weight of moist air per m ³ of volume												
	(4)													
89.	The function of a governor of steam engine is to													
	(1)) save steam												
	(2)	control the speed												
	(3)	provide safety to the people around												
	(4)	maintain constant load on the eng	gine 											
90.	Hui	Humidostat is a device which is sensitive to												
	(1)	(1) Moisture changes												
	(2)	(2) Temperature changes												
	(3)	(3) Moisture and temperature changes												
	(4)	(4) None of the above												

Which of the following wage incentive plan is applied to all workers and guarantees minimum wage?									
(1) Halsey Plan (2) Gantt Plan									
(3) Emerson's Efficiency Plan (4) Rowan Plan									
92. SIMO charts are used in									
(1) Method study (2) Micromotion study									
(3) Process Analysis (4) Layout analysis									
93. CPM is oriented technique.									
(1) time (2) event									
(3) activity (4) target									
94. Actual observed time for an operation time was 1 min/piece. If the p of the operator was 120 and a 5% personal time is to be provided, the min/piece is									
(1) 1 (2) 1.2									
(3) 1.25 (4) 1.26									
95. Pneumatic comparator is useful for inspection of									
(1) Gun bores (2) Taper Plug gauges									
(3) Thread profiles (4) Large concave radius									
96. Which of the following is a technique used for forecasting?									
(1) PERT/CPM (2) Exponential smoothing									
(3) Gantt Çhart (4) Control Chart									
97. Acetylene gas is stored in form in cylinders.									
(1) solid (2) liquid									
(3) gaseous (4) any one of the above									
98. Gear hobbing produces more accurate gears than milling as, in hobbing(1) there is a continuous indexing operation(2) pressure angle is larger	2								
(3) hob and work piece both rotate without any inter-relation									
(4) special multi-tooth cutter 'Hob' is used									
99is the code of carbide tip tools to be used on grey-cas machining.	st iron for rough								
(1) K 05 (2) P 20									
(3) K 30 (4) P 05									

100.	Rake	Rake angle of a single point cutting tool corresponds to of a twist drill.									
	(1)	Chiesel edge angle	(2)	Point angle							
	(3)	Helix angle	(4)	Lip clearance angle							
101.	In sh	heet metal work the cutting force on the tool can be reduced by									
	(1)	grinding the cutting edges sharp		•							
	(2)	increasing the hardness of die									
	(3)	increasing the hardness of punch									
	(4)	providing "shear" on tool									
102.	The	ig boring machine finds its applicat	ion w	here							
	(1)	holes of accurate centre-to-centre c	listan	ce are required							
	(2)	the holes of the drilling jigs are to b	oe acc	urately finished							
	(3)	the holes to be drilled are at inacce	essible	e position							
	(4)	the holes to be drilled are in differen	ent pl	anes							
103	Issue	e of work orders to start production	acco	rding to the schedule is called							
	(1)	Dispatching	(2)	Routing							
	(3)	Monitoring	(4)	Expediting							
104.	In ca	se of break-even analysis, a change	in pro	oduct mix is likely to influence							
	(1)	profits	(2)	break-even point							
	(3)	contribution	(4)	all of the above							
105.	Inter	ference bands will be obtained if									
	(1)	Rays of light from different source									
	(2)	two rays of same wavelength and	out o	ff phase by $\frac{1}{2}$ wavelength are in contact							
	(3)	two rays of same wavelength and	in ph	ase are in contact							
	(4)	two rays of different wavelength a	nd in	phase with one another							
106.		Vith 'C' as the acceptance number and 'n' as the sample size, the ideal O.C. curve can be obtained with									
	(1)	C = 0, n = 0	(2)	C = 1, n = 0							
	(3)	C = 0, $n = 1$	(4)	C = 1, n = 1							
107.	For .	³ σ limits used in S.Q.C. probability	of ac	cceptance is							
,	(1)	68.26%	(2)	85.00 %							
	(3)	99.73 %	(4)	95.46 %							

SMC	<u>.</u>											
	08. Centimeter is used to measure											
108.												
	(1)	angle between two surfaces										
	(2)	centre	dista	nce be	etween two un	known ł	noles					
	(3)	concav	rity of	f bore								
	(4)	radius	of ba	lls								
109.	To so	ribe lin	es pa	rallel	to the edges o	of a part,	the i	nstrui	nent 1	used is		
	(1)	Vernie	r cali	er		(2)	Scre	w gai	ıge			
	(3)	Herma	phro	dite c	aliper	(4)	Con	nbina	tion s	et		
110.	Para	llax erro	or is c	due to							<u></u>	
	(1)	error i	n reac	ling c	of an operator							
	(2)			_	nstruments							
	(3)				onmental cond	lition						
	` ′											
	(4)	uynan	ис еп	01 01	the instrumen						_	
111.	Mato	the p	airs c	of inst	ruments and t	heir app	olicati	ons:				
			Lis						List-			
				nents				-	plicat	tions		
	I.				roscope	A)		face p				
	Π.	Autoco				B)		-		parameters		
	III.	Dial ga	_	with s	stand	C)	Squareness testing					
	IV.	IV. Talysurf D) Machine setting								5		
	Selec	t the co	rrect	pairs	from the follo	wing:						
	(1)	I	II	Ш	IV	(2)	II	I	Ш	IV		
		В	C	D	A		В	A	C	D		
	(3)	IV	III	I	I	(4)	Ш	I	II	IV		
		В	_A	С	D		В	D	Α			
112.	. The Parkinson gear tester is used for measuring											

- (1) Runout test of gears
- (2) Pitch of gear tooth
- (3) Tooth thickness
- (4) Composite errors and backlash of gears
- 113. Life reliability of product is decided by
 - (1) Quality assurance
- (2) Quality of design
- (3) Quality of manufacture
- (4) Quality of performance

				SIVIG
114.	In w	hat type of sampling plan average	numb	per of pieces inspected is lowest?
	(1)	Single sampling plan	(2)	Double sampling plan
	(3)	Multiple sampling plan	(4)	None of the above
115.	Two	wire/three wire method is adopted	d for 1	measurement of
	(1)	Major diameter of screw	(2)	Core diameter of screw
	(3)	Effective diameter of screw	(4)	None of the above
116.	The	fit on a hole-shaft is specified as H	₇ –S ₆ .	The type of fit is
	(1)	clearance	(2)	sliding
	(3)	interference	(4)	transition
117.	Proc	ess capability of a machine can be c	letern	nined by using
	(1)	\bar{x} chart alone	(2)	R chart alone
	(3)	p-chart	(4)	\bar{x} and \bar{R} chart together
118.	A ta	per of internal dovetail can be meas	sured	with the help of
	(1)	Sine bar		· · · · ·
	(2)	Balls of standard dimension and s	lip ga	uges
	(3)	Combination set		
	(4)	Clinometer		
119.	The	statistical quality control was deve	loped	by
	(1)	Frederick Taylor	(2)	Walter Shewhart
	(3)	George Dantzig	(4)	W.E. Demig
120.	abso			a machine for work sampling study for an acce level, (if probability of machine being
	(1)	$\frac{4P (100-P)}{A^2}$	(2)	$\frac{P(100 - A)}{A^2}$
	(3)	$\frac{9P(100 - P)}{A^2}$	(4)	$\frac{2P(100 - P)}{A^2}$
121.	serie		so tha	l. What resistance should be connected in at the power in each 30 Ω resistor is one are of correct answer.
	(1)	30 Ω	(2)	15 Ω
	(3)	10 Ω	(4)	120 Ω

122. In an A.C. circuit having R and L in series

- (1) voltage leads the current
- (2) current leads the voltage
- (3) voltage and current are in phase
- (4) none of the above

123. The equivalent inductance L of two series connected inductors L_1 and L_2 , when their fluxes assist each other is given by

(Where M = Mutual inductance between them)

- (1) $L = L_1 + L_2 2M$
- (2) $L = L_1 + L_2 + 2M$

(3) $L = L_1 + L_2$

 $(4) \quad L = L_1 - L_2$

124. A sinusoidal voltage is represented by $\vartheta(t) = V_m \sin wt$ with standard notations. Which one of the following represents the average value of this voltage?

 $(1) \quad \frac{2 V_{\rm m}}{\pi}$

(2) $\frac{V_m}{2}$

 $(3) \quad \frac{\pi \, V_{\mathbf{m}}}{2}$

(4) zero

125. In a single phase a.c. circuit, an impedance consists of a resistance and a capacitance. The power factor of the circuit is

(1) unity

(2) zero

(3) leading

(4) lagging

126. An ideal transformer is used to step down the voltage of a 230 V circuit to 23 V. It is fully loaded when it delivers 2.3 kVA. What is the rated current for low-voltage winding?

(1) 10 A

(2) 1 A

(3) 100 A

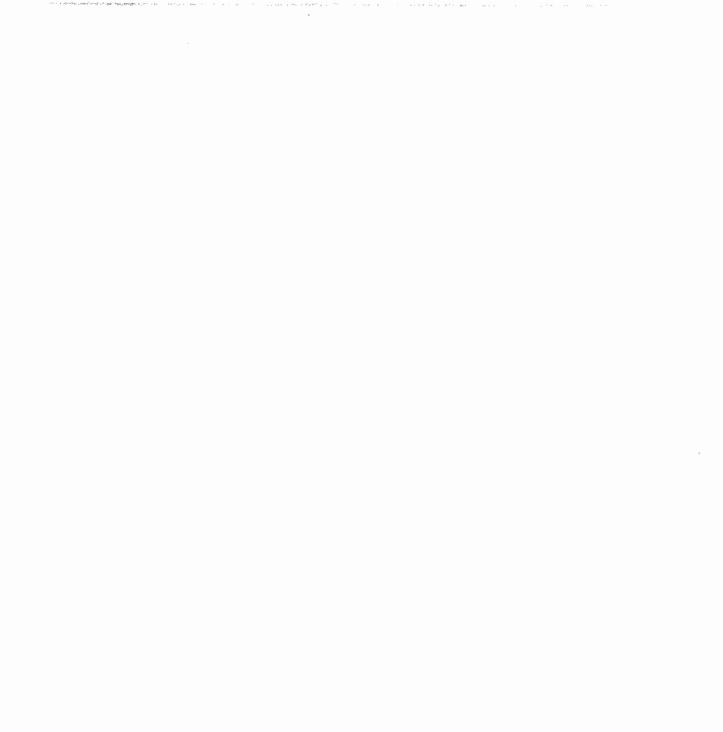
(4) 0.1 A

127. The maximum efficiency of a 1-phase transformer occurs when

- (1) it carries full load at 0.8 p.f. lagging
- (2) it carries full load at unity p.f.
- (3) it carries no load

(4) the iron losses of the transformer equal the copper losses of the same

128. Open-circuit test of a transformer gives


- (1) copper losses in the transformer
- (2) iron-losses in the transformer
- (3) insulation losses in the transformer
- (4) hysteresis losses in the transformer

129.	The that	The ultimate advantage of using an iron core rather than an air core in a transformer is hat										
	(1)	mutual inductance is increased										
	(2)											
	(3)	there is less leakage of flux										
	(4)											
130.	sequ obse	hree phase induction motor connected to a three phase supply with a phase sence of R-Y-B rotates in clockwise direction. Which of the following effects are erved if the phase sequence is changed to R-B-Y?										
	(1)	Rotate in anticlockwise direction										
	(2)	Continue to rotate in clockwise di	rectio	n								
	(3)	Not rotate										
	(4)	Oscillate										
131.	A m	otor used for a ceiling fan is										
	(1)	a universal motor										
	(2)	a shaded pole single phase induct	ion m	otor								
	(3)	a capacitor start single phase indu	ıction	motor								
	(4)	a capacitor run single phase induction motor (permanent capacitor single phase induction motor)										
132.	Whe		requi	red using A.C. supply, the choice of the								
	(1)	universal motor	(2)	shaded pole motor								
	(3)	capacitor-start induction motor	(4)	synchronous motor								
133.		c. series generator has a no load in no load induced e.m.f. is	duce	d e.m.f. of 10 volts. If its speed is doubled,								
	(1)	20 volts	(2)	10 volts								
	(3)	5 volts	(4)	zero volt								
134.	In dynamometer wattmeter, to compensate for the inductance of pressure coil circuit, capacitor is connected											
	(1)	in parallel with current coil	(2)	in series with pressure coil								
	(3)	in series with current coil	(4)	in parallel with pressure coil								
135.	Sing	le phase energy meter may be class	ified a	as								
	(1)	indicating type instrument	(2)	integrating type instrument								
	(3)	induction type instrument	(4)	recording type instrument								
	_											

21 P.T.O.

(1) Bi-directional (3) Both (1) and (2) (4) None of the above 137. Avalanche breakdown is primarily dependent on phenomenon of (1) collision (2) doping (3) ionization (4) recombination 138. In which order the blocks appear in the block diagram of a complete regulated power supply unit? (1) Rectifier-regulation-filter-transformer-load (2) Transformer-rectifier-filter-regulator-load (3) Transformer-rectifier-regulator-filter-load (4) Rectifier-regulator-filter-transformer-load 139. In an automatic electric iron the temperature transducer used is (1) Bimetallic strip (2) Thermocouple (3) R.T.D. (4) Thermister 140. After firing an SCR, the gating pulse is removed. Then the current in the SCR will (1) remain the same (2) immediately fall to zero (3) rise up (4) rise a little and then fall to zero 141. The colour of light emitted by a LED depends on (1) its forward bias (2) its reverse bias (3) the amount of forward current (4) type of semiconductor material used 142. In an oscillator circuit, 5% of the output is fed back positively to the input. What is the minimum gain required for oscillations to occur? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I (A) LVDT (B) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (II) A B C D II III IV I III II IV I III II IV I III II IV I III II IV I III II	136.	Silicon controlled rectifier is											
137. Avalanche breakdown is primarily dependent on phenomenon of (1) collision (2) doping (3) ionization (4) recombination 138. In which order the blocks appear in the block diagram of a complete regulated power supply unit? (1) Rectifier-regulation-filter-transformer-load (2) Transformer-rectifier-filter-regulator-load (3) Transformer-rectifier-regulator-filter-load (4) Rectifier-regulator-filter-transformer-load 139. In an automatic electric iron the temperature transducer used is (1) Bimetallic strip (2) Thermocouple (3) R.T.D. (4) Thermister 140. After firing an SCR, the gating pulse is removed. Then the current in the SCR will (1) remain the same (2) immediately fall to zero (3) rise up (4) rise a little and then fall to zero 141. The colour of light emitted by a LED depends on (1) its forward bias (2) its reverse bias (3) the amount of forward current (4) type of semiconductor material used 142. In an oscillator circuit, 5% of the output is fed back positively to the input. What is the minimum gain required for oscillations to occur? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I List-I (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (III) Pressure measurement (C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (II) A B C D (2) A B C D II III Pressure measurement		(1)	Bi-dire	ection	al		(2)	Uni-	direc	tional			
(1) collision (2) doping (3) ionization (2) doping (3) ionization (4) recombination 138. In which order the blocks appear in the block diagram of a complete regulated power supply unit? (1) Rectifier-regulation-filter-transformer-load (2) Transformer-rectifier-filter-regulator-load (3) Transformer-rectifier-regulator-filter-load (4) Rectifier-regulator-filter-transformer-load 139. In an automatic electric iron the temperature transducer used is (1) Bimetallic strip (2) Thermocouple (3) R.T.D. (4) Thermister 140. After firing an SCR, the gating pulse is removed. Then the current in the SCR will (1) remain the same (2) immediately fall to zero (3) rise up (4) rise a little and then fall to zero 141. The colour of light emitted by a LED depends on (1) its forward bias (2) its reverse bias (3) the amount of forward current (4) type of semiconductor material used 142. In an oscillator circuit, 5% of the output is fed back positively to the input. What is the minimum gain required for oscillations to occur? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (III) Pressure measurement (C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (II) A B C D II III V I III (II) III IV I III (II) III IV I III (II) A B C D III III V I III (III) III III IV I III (III) III III IV I IIII (III) III III IV I III (IIII III III III III III III III		(3)	Both (1) and	d (2)		(4)	None	e of tl	ne abo	ove		
(1) collision (2) doping (3) ionization (2) doping (3) ionization (4) recombination 138. In which order the blocks appear in the block diagram of a complete regulated power supply unit? (1) Rectifier-regulation-filter-transformer-load (2) Transformer-rectifier-filter-regulator-load (3) Transformer-rectifier-regulator-filter-load (4) Rectifier-regulator-filter-transformer-load 139. In an automatic electric iron the temperature transducer used is (1) Bimetallic strip (2) Thermocouple (3) R.T.D. (4) Thermister 140. After firing an SCR, the gating pulse is removed. Then the current in the SCR will (1) remain the same (2) immediately fall to zero (3) rise up (4) rise a little and then fall to zero 141. The colour of light emitted by a LED depends on (1) its forward bias (2) its reverse bias (3) the amount of forward current (4) type of semiconductor material used 142. In an oscillator circuit, 5% of the output is fed back positively to the input. What is the minimum gain required for oscillations to occur? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I List-II (A) LVDT (I) Temperature measurement (C) Thermister (III) Pressure measurement (C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (II) A B C D II III IV I III (II) IV I III (II) III IV I III (III) IV I III (IIII) IV I III (IIII) IV I III (IIII) IV I III (IIIII IV I IIII (IIII) IV I III (IIIII IV I IIII (IIIII IV I IIII III	137	Avalanche breakdown is primarily dependent on phenomenon of											
33 ionization	107.				20111	is printarny depo		-					
138. In which order the blocks appear in the block diagram of a complete regulated power supply unit? (1) Rectifier-regulation-filter-transformer-load (2) Transformer-rectifier-filter-regulator-load (3) Transformer-rectifier-regulator-filter-load (4) Rectifier-regulator-filter-transformer-load (5) Transformer-rectifier-regulator-filter-load (6) Rectifier-regulator-filter-transformer-load (8) Rectifier-regulator-filter-transformer-load (9) In an automatic electric iron the temperature transducer used is (1) Bimetallic strip (2) Thermocouple (3) R.T.D. (4) Thermister 140. After firing an SCR, the gating pulse is removed. Then the current in the SCR will (1) remain the same (2) immediately fall to zero (3) rise up (4) rise a little and then fall to zero (1) its forward bias (2) its reverse bias (3) the amount of forward current (4) type of semiconductor material used 142. In an oscillator circuit, 5% of the output is fed back positively to the input. What is the minimum gain required for oscillations to occur? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (III) Pressure measurement (C) Thermister (III) Pressure measurement (III) Pressure measurement (III) Pressure measurement (III) A B C D II III IV I III (III) IV I III (III) III IV I III (III) IV I IIII (III) IV I III (IIII) IV								-	-	ation			
supply unit? (1) Rectifier-regulation-filter-transformer-load (2) Transformer-rectifier-filter-regulator-load (3) Transformer-rectifier-regulator-filter-load (4) Rectifier-regulator-filter-transformer-load 139. In an automatic electric iron the temperature transducer used is (1) Bimetallic strip (2) Thermocouple (3) R.T.D. (4) Thermister 140. After firing an SCR, the gating pulse is removed. Then the current in the SCR will (1) remain the same (2) immediately fall to zero (3) rise up (4) rise a little and then fall to zero 141. The colour of light emitted by a LED depends on (1) its forward bias (2) its reverse bias (3) the amount of forward current (4) type of semiconductor material used 142. In an oscillator circuit, 5% of the output is fed back positively to the input. What is the minimum gain required for oscillations to occur? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (1) A B C D (2) A B C D (3) A B C D (4) I III (4) A B C D (5) A B C D (6) A B C D (7) A B C D (8) IIII IIV I III (8) A B C D		(0)	TOTTIZU		_		(1)						
(2) Transformer-rectifier-filter-regulator-load (3) Transformer-rectifier-regulator-filter-load (4) Rectifier-regulator-filter-transformer-load 139. In an automatic electric iron the temperature transducer used is (1) Bimetallic strip (2) Thermocouple (3) R.T.D. (4) Thermister 140. After firing an SCR, the gating pulse is removed. Then the current in the SCR will (1) remain the same (2) immediately fall to zero (3) rise up (4) rise a little and then fall to zero 141. The colour of light emitted by a LED depends on (1) its forward bias (2) its reverse bias (3) the amount of forward current (4) type of semiconductor material used 142. In an oscillator circuit, 5% of the output is fed back positively to the input. What is the minimum gain required for oscillations to occur? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I List-II (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (1) A B C D (2) A B C D II III IV I III (3) A B C D (4) A B C D	13 9 .												
(3) Transformer-rectifier-regulator-filter-load (4) Rectifier-regulator-filter-transformer-load 139. In an automatic electric iron the temperature transducer used is (1) Bimetallic strip (2) Thermocouple (3) R.T.D. (4) Thermister 140. After firing an SCR, the gating pulse is removed. Then the current in the SCR will (1) remain the same (2) immediately fall to zero (3) rise up (4) rise a little and then fall to zero (3) rise up (4) rise a little and then fall to zero 141. The colour of light emitted by a LED depends on (1) its forward bias (2) its reverse bias (3) the amount of forward current (4) type of semiconductor material used 142. In an oscillator circuit, 5% of the output is fed back positively to the input. What is the minimum gain required for oscillations to occur? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I List-II (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (1) A B C D (2) A B C D II III IV I III (3) A B C D (4) A B C D		(1)	Rectifi	er-reg	gulati	on-filter-transfo	rmer-	load					
(4) Rectifier-regulator-filter-transformer-load 139. In an automatic electric iron the temperature transducer used is (1) Bimetallic strip (2) Thermocouple (3) R.T.D. (4) Thermister 140. After firing an SCR, the gating pulse is removed. Then the current in the SCR will (1) remain the same (2) immediately fall to zero (3) rise up (4) rise a little and then fall to zero 141. The colour of light emitted by a LED depends on (1) its forward bias (2) its reverse bias (3) the amount of forward current (4) type of semiconductor material used 142. In an oscillator circuit, 5% of the output is fed back positively to the input. What is the minimum gain required for oscillations to occur? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I List-II (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (1) A B C D (2) A B C D II III IV I III (3) A B C D II IV I III (4) A B C D II IV I III (5) III IV I III (6) A B C D II III IV I III (7) I III IV I III (8) III IV I IIII (9) III IV I IIII (10) III IV I IIII (11) III IV I IIII (12) III IV I IIII IV I IIII (13) III IV I IIII IV I IIII (14) III IV I IIII IV I IIII IV I IIII III		(2)	Transf	orme	r–rect	ifier–filter–regula	ator-le	oad					
(4) Rectifier-regulator-filter-transformer-load 139. In an automatic electric iron the temperature transducer used is (1) Bimetallic strip (2) Thermocouple (3) R.T.D. (4) Thermister 140. After firing an SCR, the gating pulse is removed. Then the current in the SCR will (1) remain the same (2) immediately fall to zero (3) rise up (4) rise a little and then fall to zero 141. The colour of light emitted by a LED depends on (1) its forward bias (2) its reverse bias (3) the amount of forward current (4) type of semiconductor material used 142. In an oscillator circuit, 5% of the output is fed back positively to the input. What is the minimum gain required for oscillations to occur? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I List-II (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (1) A B C D (2) A B C D II III IV I III (3) A B C D II IV I III (4) A B C D II IV I III (5) III IV I III (6) A B C D II III IV I III (7) I III IV I III (8) III IV I IIII (9) III IV I IIII (10) III IV I IIII (11) III IV I IIII (12) III IV I IIII IV I IIII (13) III IV I IIII IV I IIII (14) III IV I IIII IV I IIII IV I IIII III		(3)	Transf	orme	r–rect	ifier–regulator–fi	lterle	oad					
(1) Bimetallic strip (3) R.T.D. (4) Thermocouple (3) R.T.D. (4) Thermister 140. After firing an SCR, the gating pulse is removed. Then the current in the SCR will (1) remain the same (2) immediately fall to zero (3) rise up (4) rise a little and then fall to zero (1) its forward bias (2) its reverse bias (3) the amount of forward current (4) type of semiconductor material used 142. In an oscillator circuit, 5% of the output is fed back positively to the input. What is the minimum gain required for oscillations to occur? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (1) A B C D (2) A B C D (3) A B C D (4) A B C D (5) B II III IV I III (6) B III IV I III (7) I III IV I III (8) B III IV I III (9) B III IV I III (10) B III IV I III (11) B III IV I III (12) B III IV I III (13) A B C D (14) A B C D		(4)				-							
(1) Bimetallic strip (3) R.T.D. (4) Thermocouple (3) R.T.D. (4) Thermister 140. After firing an SCR, the gating pulse is removed. Then the current in the SCR will (1) remain the same (2) immediately fall to zero (3) rise up (4) rise a little and then fall to zero (1) its forward bias (2) its reverse bias (3) the amount of forward current (4) type of semiconductor material used 142. In an oscillator circuit, 5% of the output is fed back positively to the input. What is the minimum gain required for oscillations to occur? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (1) A B C D (2) A B C D (3) A B C D (4) A B C D (5) B II III IV I III (6) B III IV I III (7) I III IV I III (8) B III IV I III (9) B III IV I III (10) B III IV I III (11) B III IV I III (12) B III IV I III (13) A B C D (14) A B C D	139	In ar	autom	atic e	lectric	iron the temper	afure	transc	lucer	used i	is		
(3) R.T.D. (4) Thermister 140. After firing an SCR, the gating pulse is removed. Then the current in the SCR will (1) remain the same (2) immediately fall to zero (3) rise up (4) rise a little and then fall to zero 141. The colour of light emitted by a LED depends on (1) its forward bias (2) its reverse bias (3) the amount of forward current (4) type of semiconductor material used 142. In an oscillator circuit, 5% of the output is fed back positively to the input. What is the minimum gain required for oscillations to occur? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (1) A B C D (2) A B C D II III IV I III (3) A B C D	10).					non me temper							
140. After firing an SCR, the gating pulse is removed. Then the current in the SCR will (1) remain the same (2) immediately fall to zero (3) rise up (4) rise a little and then fall to zero 141. The colour of light emitted by a LED depends on (1) its forward bias (2) its reverse bias (3) the amount of forward current (4) type of semiconductor material used 142. In an oscillator circuit, 5% of the output is fed back positively to the input. What is the minimum gain required for oscillations to occur? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (1) A B C D II III IV I III (3) A B C D					· P	•				•			
(1) remain the same (2) immediately fall to zero (3) rise up (4) rise a little and then fall to zero 141. The colour of light emitted by a LED depends on (1) its forward bias (2) its reverse bias (3) the amount of forward current (4) type of semiconductor material used 142. In an oscillator circuit, 5% of the output is fed back positively to the input. What is the minimum gain required for oscillations to occur? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I List-II (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (1) A B C D (2) A B C D II III IV I III (3) A B C D (4) A B C D		(0)	10.1.0				(1)						
(3) rise up (4) rise a little and then fall to zero 141. The colour of light emitted by a LED depends on (1) its forward bias (2) its reverse bias (3) the amount of forward current (4) type of semiconductor material used 142. In an oscillator circuit, 5% of the output is fed back positively to the input. What is the minimum gain required for oscillations to occur? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (D) Capacitive transducer (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (1) A B C D II III IV I III (3) A B C D (4) A B C D	140.	Afte	r firing	an SC	R, the	gating pulse is r	emov	ed. Th	ien th	e curi	ent in the SCR will		
141. The colour of light emitted by a LED depends on (1) its forward bias (2) its reverse bias (3) the amount of forward current (4) type of semiconductor material used 142. In an oscillator circuit, 5% of the output is fed back positively to the input. What is the minimum gain required for oscillations to occur? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (1) A B C D II III IV I III (3) A B C D (4) A B C D		(1)	remaii	n the s	same		(2)	imm	ediat	ely fal	ll to zero		
(1) its forward bias (2) its reverse bias (3) the amount of forward current (4) type of semiconductor material used 142. In an oscillator circuit, 5% of the output is fed back positively to the input. What is the minimum gain required for oscillations to occur? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (1) A B C D II III IV I II IV I III IV I IIII IV I III IV I IIII (A) A B C D III III IV I IIII IV I IIII IV I IIII IV I IIIII IV I IIII IV I IIII IV I IIIII IV I IIIIIIII		(3)	rise up)			(4)	rise a	a littl	e and	then fall to zero		
minimum gain required for oscillations to occur ? (Assume that proper phase-shift is achieved) (1) 50 (2) 0.95 (3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I List-II (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (1) A B C D (2) A B C D II III IV I III (3) A B C D (4) A B C D	141.	(1)(2)(3)	 its forward bias its reverse bias the amount of forward current 										
(3) 20 (4) 1.05 143. Match List-I and List-II and select correct code. List-I (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (D) Capacitive transducer (IV) Acceleration measurement (1) A B C D II III IV I II IV I III (3) A B C D (4) A B C D	142.	minimum gain required for oscillations to occur? (Assume that proper phase-shift is											
143. Match List-I and List-II and select correct code. List-I (A) LVDT (I) Temperature measurement (B) Piezoelectric pick up (II) Displacement measurement (C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (1) A B C D II III IV I III (3) A B C D (4) A B C D		(1)	50				(2)	0.95					
List-I (A) LVDT (B) Piezoelectric pick up (C) Thermister (D) Capacitive transducer (II) Displacement measurement (III) Pressure measurement (IV) Acceleration measurement (IV) Acceleration measurement (IV) I III IV I III (IV) I IIII (IV) I IIIII (IV) I IIII (IV) I IIIII IIII IIII IIII IIII IIII II		(3)	20				(4)	1.05					
(A) LVDT (B) Piezoelectric pick up (C) Thermister (D) Capacitive transducer (III) Displacement measurement (III) Pressure measurement (IV) Acceleration measurement (IV) Acceleration measurement (IV) I III (IV) I IIII (IV) I III	143.	Mato		I and	List-I	I and select corre	ect coo	de.	τ:	or II			
(B) Piezoelectric pick up (C) Thermister (D) Capacitive transducer (III) Displacement measurement (III) Pressure measurement (IV) Acceleration measurement (IV) A B C D II III IV I III (3) A B C D (4) A B C D		(A)		,			(T)	Тот			0.0 0.1 11 0.0 1 t		
(C) Thermister (III) Pressure measurement (D) Capacitive transducer (IV) Acceleration measurement (1) A B C D II III IV I II IV I III (3) A B C D (4) A B C D		` ,			:-1				-				
(D) Capacitive transducer (IV) Acceleration measurement (1) A B C D II III IV I (3) A B C D (4) A B C D		, ,			с ріск	up		_					
(1) A B C D (2) A B C D II III IV I III IV I III (3) A B C D (4) A B C D						1	. ,						
II III IV I II IV I III (3) A B C D (4) A B C D		(D)	Capac	itive	transc	lucer	(1V)	Acce	elerati	ion me	easurement		
II III IV I II IV I III (3) A B C D (4) A B C D		(1)	A	В	C	D	(2)	Α	В	C	D		
(3) A B C D (4) A B C D		,					` /						
		(3)					(4)						
				II	III	IV	. ,	П	Ш	I	IV		

144.	The sweep frequency of time base generator is adjusted to 4 KHz. How many cycles of a sinusoidal signal with frequency 2 KHz are viewed?							
	(1)	a full cycle	(2)	two cycles				
	(3)	a half cycle	(4)	four cycles				
145.	Zene	er diodes are used for						
	(1)	amplification of a.c. signal	(2)	attenuation of a signal				
	(3)	phase shift introduction	(4)	voltage regulator circuits				
146.	Hot	wire anemometers are employed for	r mea	surement of				
	(1)	volume and mass flow	(2)	temperature				
	(3)	pressure	(4)	displacement				
147.	Whe	n emitter-base junction of a transist	or is 1	reverse-biased, the collector current				
	(1)	decreases for PNP transistor						
	(2)	increases for NPN transistor						
	(3)	stops, irrespective of PNP or NPN	1					
	(4)	reverses, irrespective of PNP or N	PN					
148.		time interval between two consecu e rectifier fed from a 50 Hz input is		eaks of output voltage waveform of a half				
	(1)	5 milliseconds	(2)	10 milliseconds				
	(3)	15 milliseconds	(4)	20 milliseconds				
149.	Con	sider the following statements A an	d R.					
	Asse	rtion (A) : UJT is a negative re	sistar	ice device.				
	Reas	on (R) : UJT has only one p	–n ju	nction.				
	Sele	ct your answer from the following a	lterna	tives:				
	(1)	Both (A) and (R) are true and (R)	is cor	rect explanation of (A).				
	(2)	Both (A) and (R) are true but (R) i	s <u>NO</u>	$\underline{\mathbf{T}}$ the correct explanation of (A).				
	(3)	(A) is true but (R) is false.						
	(4)	(A) is false but (R) is true.	_					
150.	T.V.	M. is superior to conventional voltn	neter	because				
	(a)	it has high input impedance						
	(b)	it enables the measurement of low	a.c. a	and d.c. voltages				
	(c)	it enables measurement of high fre						
	. ,	ct your answer from the following:	-					
	(1)	'a' alone is true	(2)	'b' alone is true				
	(3)	'a' and 'b' are true	(4)	'a' , 'b' and 'c' are all true				

