सहायक मोटार वाहन निरीक्षक परीक्षा-2003

CODE : SPD R. 38.3.07

प्रश्नपस्तिका क्रमांक BOOKLET NO.

प्रश्नपुस्तिका

वेळ :  $1\frac{1}{2}$  (दीड) तास

यंत्र अभियांत्रिकी

एकूण प्रश्न : १५0

एकूण गुण: 300

#### सूचना

1) <u>सदर प्रश्नपुस्तिकेत १५०</u> अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापुर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

2) आपला परीक्षा-क्रमांक ह्या चौकोनात न विसरता बॉलपेनने लिहावा.



- 3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे **न विसरता नमृद**
- 4) (अ) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सुचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमुद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी, ह्याकरिता फक्त निळया वा काळया शार्डचे बॉलपेन वापरावे. पेन्सिल वा शार्डचे पेन वापरू नये.
  - (ब) आयोगाने ज्या विषयासाठी मराठी बरोबर इंग्रजी माध्यम विहित केलेले आहे. त्या विषयाचा प्रत्येक प्रश्न मराठी बरोबर इंग्रजी भाषेत देखील छापण्यात येईल. त्यामधील इंग्रजीतील किंवा मराठीतील प्रश्नामध्ये मुद्रणदोषांमुळे अथवा अन्य कारणांमुळे विसंगती निर्माण झाल्याची शंका आल्यास, उमेदवाराने संबंधित प्रश्न पर्यायी भाषेतील प्रश्नाशी ताडून पहावा.
- 5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण *एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न* **घालविता पृढील प्रश्नाकडे वळावे.** अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- 6) उत्तरपत्रिकेत एकदा नमृद केलेले उत्तर खोडता येणार नाही. नमृद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार
- 7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मुल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. त्या प्राप्त गुणांतून त्यांनी उत्तरपत्रिकेत चुकीची उत्तरे नमूद केल्याबद्दल गुण वजा केले जाणार नाहीत.

->( कपया पान उलटवा )

## ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्य ''परीक्षांमध्ये होणाया गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम -82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एका वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळ्गणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

CODE: SPD

CODE: SPD

- 8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त-उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एका वर्षांच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- 9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. <u>मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपली उत्तरपत्रिका समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.</u>
- 10) प्रस्तुत प्रश्नपुस्तिकेतील प्रश्नांमध्ये काही दोष आढळल्यास, त्यासंबंधी उमेदवाराने अधिप्रमाणित (Authentic) स्पष्टीकरण/ संदर्भ देऊन आपले लेखी निवेदन आयोगाच्या परीक्षा नियंत्रकांकडेच स्वत:च्या तपशीलासह टपालाने पाठवावे. <u>याबाबत पर्यवेक्षक/समवेक्षक इत्यादींकडे विचारणा करू नये</u>.आयोगाकडे सदर परीक्षेच्या दिनांकापासून 8 दिवसांपर्यंत पोहोचलेल्या लेखी निवेदनाची फक्त दखल घेतली जाते. तद्नंतर आलेली निवेदने विचारात घेतली जात नाहीत. तसेच प्राप्त झालेल्या निवेदनाबद्दल कोणताही पत्रव्यवहार केला जात नाही.

### नमुना प्रश्न

| प्र.क्रं.201 : | What | is the minimum | number o | of pairs | required | to form a | Kinetmatic | chain ? |
|----------------|------|----------------|----------|----------|----------|-----------|------------|---------|
|                | (1)  | T              |          |          | (2)      | Tl        |            |         |

(1) Two

(2) Three

(3) Six

(4) Four

ह्या प्रश्नाचे योग्य उत्तर ''(3) Six' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. यास्तव खालीलप्रमाणे प्र. क्र. 201 समोरील उत्तर क्रमांक ''[3]'' हा कंस पूर्णपणे छायांकित करून दाखिवणे आवश्यक आहे.

я. 201. [1] [2] [4]

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्र्यरीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित कंस पूर्णपणे छायांकित करून दाखवावा. हयाकरिता फक्त निळया वा काळ्या शाईचे बॉलपेन वापरावे. पेन्सिल वा शोईचें पैन वापरू नये.

# पर्यवेक्षकांच्या सूचनेविना हे पृष्ठ उलटू नये

CODE: SPD

# कच्च्या कामासाठी जागा SPACE FOR ROUGH WORK

# MECHANICAL ENGINEERING

| 1. | In r  | nultistage compression, intercoolir              | ıg i | is done to              |  |  |  |  |  |
|----|-------|--------------------------------------------------|------|-------------------------|--|--|--|--|--|
|    | (1)   | ` <i>'</i>                                       |      |                         |  |  |  |  |  |
|    | (2)   |                                                  |      |                         |  |  |  |  |  |
|    | (3)   | cool the air                                     |      |                         |  |  |  |  |  |
|    | (4)   | all of the above                                 |      |                         |  |  |  |  |  |
| 2. | Ref   | rigeration is based on                           |      |                         |  |  |  |  |  |
|    | (1)   | First Law of Thermodynamics                      |      |                         |  |  |  |  |  |
|    | (2)   | Second Law of Thermodynamics                     | 3    |                         |  |  |  |  |  |
|    | (3)   | Dalton's law                                     |      |                         |  |  |  |  |  |
|    | (4)   | Boyle's law                                      |      |                         |  |  |  |  |  |
| 3. | In d  | lomestic refrigerator, following con             | np   | ressor is used          |  |  |  |  |  |
|    | (1)   | Rotary (2                                        | 2)   | Reciprocating           |  |  |  |  |  |
|    | (3)   | Centrifugal (                                    | 4)   | None of the above       |  |  |  |  |  |
| 4. | Free  | ezing point of Brine is                          |      |                         |  |  |  |  |  |
|    | (1)   | below 0° centigrade                              |      |                         |  |  |  |  |  |
|    | (2)   |                                                  |      |                         |  |  |  |  |  |
|    | (3)   | equal to $0^\circ$ centigrade                    |      |                         |  |  |  |  |  |
|    | (4)   | none of the above                                |      |                         |  |  |  |  |  |
| 5. | Fun   | ction of thermostat in a domestic r              | efr  | igerator is to maintain |  |  |  |  |  |
|    | (1)   | Temperature constant                             |      |                         |  |  |  |  |  |
|    | (2)   | Pressure constant                                |      |                         |  |  |  |  |  |
|    | (3)   | Volume constant                                  |      |                         |  |  |  |  |  |
|    | (4)   | None of the above                                |      |                         |  |  |  |  |  |
| 6. |       | Air conditioning is control of                   |      |                         |  |  |  |  |  |
|    | (1)   | temperature of air                               |      |                         |  |  |  |  |  |
|    | (2)   |                                                  |      |                         |  |  |  |  |  |
|    | (3)   | temperature, relative humidity and motion of air |      |                         |  |  |  |  |  |
|    | (4)   | none of the above                                |      |                         |  |  |  |  |  |
| 7. | In co | omfort air-conditioning, the requir              | ed   | comfort conditions are  |  |  |  |  |  |
|    | (1)   | 15 °C DBT & 75 % R.H.                            |      |                         |  |  |  |  |  |
|    | (2)   | 20 °C DBT & 80 % R.H.                            |      |                         |  |  |  |  |  |
|    | (3)   | 15 °C DBT & 35 % R.H.                            |      |                         |  |  |  |  |  |
|    | (4)   | 24 °C DBT & 60 % R.H.                            |      |                         |  |  |  |  |  |
|    |       |                                                  |      |                         |  |  |  |  |  |

| SPD     | The vector sum of outfing valority and object about the state of the s |                                      |                |                                 |                 |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------|---------------------------------|-----------------|--|--|--|--|
| 17.     | The vector sum of cutting velocity and chip velocity is shear velocity.  (1) equal to (2) more than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                |                                 |                 |  |  |  |  |
|         | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | less than                            | (4)            | half of the                     |                 |  |  |  |  |
| 18.     | If 't <sub>o</sub> ', 't <sub>m</sub> ' and 't <sub>p</sub> ' represent optimistic time, most probable time and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                |                                 |                 |  |  |  |  |
|         | pess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | simistic time respectively           | v for a projec |                                 |                 |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | analysis, most probable expected     |                |                                 |                 |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e 't <sub>e</sub> ' is equal to      |                |                                 |                 |  |  |  |  |
|         | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{t_{o} + 4\;t_{m} + t_{p}}{6}$ | (2)            | $\frac{t_o + 6 t_m + t_p}{6}$   |                 |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                |                                 |                 |  |  |  |  |
|         | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{t_0 + 2 t_m + t_p}{6}$        | (4)            | $\frac{2 t_o + 4 t_m + t_p}{6}$ |                 |  |  |  |  |
| <br>19. | The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | surface to be left unmac             | hined is mar   | ked on the patter               | n with colour   |  |  |  |  |
| 17.     | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | red                                  | (2)            | yellow                          | ti with colour. |  |  |  |  |
|         | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | blue                                 | (4)            | black                           |                 |  |  |  |  |
|         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | (2)            |                                 |                 |  |  |  |  |
| 20.     | In ultrasonic machining, the tool is made of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                |                                 |                 |  |  |  |  |
|         | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tungsten carbide                     | (2)            | brass or copper                 |                 |  |  |  |  |
|         | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | diamond                              | (4)            | stainless steel                 |                 |  |  |  |  |
| 21.     | Spacing between two spot welds inspot-welding should not be less than,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                |                                 |                 |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | re 'd' is the electrode tip          |                | 2.4                             |                 |  |  |  |  |
|         | (1)<br>(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d<br>1.5 d                           | (2)<br>(4)     | 3 d<br>6 d                      |                 |  |  |  |  |
| 22.     | In work measurement (time) study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                |                                 |                 |  |  |  |  |
|         | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                |                                 |                 |  |  |  |  |
|         | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                |                                 |                 |  |  |  |  |
|         | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                    |                |                                 |                 |  |  |  |  |
|         | (4) the study should not be conducted without correct tools and materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                |                                 |                 |  |  |  |  |
| 23.     | Slug pulling during piercing and blanking operations can be avoided by providing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                |                                 |                 |  |  |  |  |
|         | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sufficient clearance in l            | noles.         |                                 |                 |  |  |  |  |
|         | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                    |                |                                 |                 |  |  |  |  |
|         | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                |                                 |                 |  |  |  |  |
|         | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | perforated punches                   |                |                                 |                 |  |  |  |  |
| 24.     | The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rake angle of cutting too            |                |                                 |                 |  |  |  |  |
|         | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | controls the chip forma              | ition          |                                 |                 |  |  |  |  |
|         | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | prevents rubbing                     |                |                                 |                 |  |  |  |  |
|         | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | determines the profile               |                |                                 |                 |  |  |  |  |
|         | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | determines whether th                | e cutting acti | on is oblique or c              | orthogonal      |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                |                                 |                 |  |  |  |  |

| •   |                                                                                           |                                                                                                |          | SPD                                            |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------|------------------------------------------------|--|--|--|--|--|
| 25. | The                                                                                       | The normal time is expressed as                                                                |          |                                                |  |  |  |  |  |
|     | (1)                                                                                       | (1) observed time × performance rating (°o)                                                    |          |                                                |  |  |  |  |  |
|     | (-)                                                                                       | 100/                                                                                           |          |                                                |  |  |  |  |  |
|     | (2)                                                                                       | observed time + performance<br>100                                                             | erating  | <u>g (':)</u>                                  |  |  |  |  |  |
|     | (2)                                                                                       | observed time - performance                                                                    | rating   | $\chi(0,0)$                                    |  |  |  |  |  |
|     | (3)                                                                                       | 100                                                                                            |          | -                                              |  |  |  |  |  |
|     | (4)                                                                                       | $\frac{\text{observed time}}{\text{performance rating } \binom{\alpha_0}{\alpha}} \times 100$  | )        |                                                |  |  |  |  |  |
|     | (1)                                                                                       | performance rating (%) ^ 10                                                                    | ,,       |                                                |  |  |  |  |  |
| 26. | A n                                                                                       | netal hardened by cold working                                                                 | g can b  | e softened by a heat treating process known as |  |  |  |  |  |
|     | (1)                                                                                       | carbonizing                                                                                    | (2)      |                                                |  |  |  |  |  |
|     | (3)                                                                                       | normalising                                                                                    | (4)      | tempering                                      |  |  |  |  |  |
| 27. | Wh                                                                                        |                                                                                                |          | n used for linear measurements ?               |  |  |  |  |  |
|     | (1)                                                                                       | (1) Dial gauge has a zero centred dial scale, hence requires resetting.                        |          |                                                |  |  |  |  |  |
|     | (2)                                                                                       | (2) Dial gauge has no reference surface, hence setting provides reference for the measurement. |          |                                                |  |  |  |  |  |
|     | (3)                                                                                       | (3) Dial gauge is sensitive, hence needs resetting all the time                                |          |                                                |  |  |  |  |  |
|     | (4)                                                                                       | None of the above                                                                              |          | U                                              |  |  |  |  |  |
| 28. | The                                                                                       | The three sigma limits on control chart for X are                                              |          |                                                |  |  |  |  |  |
|     | (1)                                                                                       | $\overline{\overline{X}} \pm 3\sigma \overline{X}$                                             | (2)      | $D_4 R$                                        |  |  |  |  |  |
|     |                                                                                           |                                                                                                |          |                                                |  |  |  |  |  |
|     | (3)                                                                                       | $\bar{C} \pm 3\sqrt{\bar{C}}$                                                                  | (4)      | $u \pm 3\sqrt{u/n}$                            |  |  |  |  |  |
| 29. | Con                                                                                       | Comparators are used for                                                                       |          |                                                |  |  |  |  |  |
|     | (1)                                                                                       | •                                                                                              |          |                                                |  |  |  |  |  |
|     | (2)                                                                                       | measurement in sampling ins                                                                    |          | on .                                           |  |  |  |  |  |
|     | (3)                                                                                       |                                                                                                |          |                                                |  |  |  |  |  |
|     | (4)                                                                                       | none of the above                                                                              |          |                                                |  |  |  |  |  |
| 30. | Centring of the manufacturing process (tool setting) is revealed by statistical parameter |                                                                                                |          |                                                |  |  |  |  |  |
|     | (1)                                                                                       | standard deviation                                                                             | (2)      | arithmetic average                             |  |  |  |  |  |
|     | (3)                                                                                       | skewness                                                                                       | (4)      | range of variation                             |  |  |  |  |  |
| 31. | 'Coı                                                                                      | nstant chord' measurement of g                                                                 | gears c  | hecks                                          |  |  |  |  |  |
|     | (1)                                                                                       | correctness of tooth profile                                                                   | (2)      | concentricity of gears                         |  |  |  |  |  |
|     | (3)                                                                                       | pitch circle diameter                                                                          | (4)      | tooth thickness at chordal addendum            |  |  |  |  |  |
| 32. | Pne                                                                                       | umatic comparators have a ver                                                                  | v smal   | I range of measurement because                 |  |  |  |  |  |
|     | (1)                                                                                       | it is designed for high magni                                                                  | fication | 1                                              |  |  |  |  |  |
|     | (2)                                                                                       | it is highly sensitive                                                                         | ,        |                                                |  |  |  |  |  |
|     |                                                                                           | (3) its output has a very short range of linearity                                             |          |                                                |  |  |  |  |  |
|     | (4)                                                                                       | none of the above                                                                              |          |                                                |  |  |  |  |  |

| 33. | In t                                                                                                                            | In foundry, quality control chart used is                                                                                                                 |                                          |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 55. |                                                                                                                                 | R chart                                                                                                                                                   |                                          | P chart                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | , ,                                                                                                                             | X chart                                                                                                                                                   | (4)                                      | C chart                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 34. | has<br>whe<br>dim<br>(1)                                                                                                        | 50 divisions on thimble. A<br>en measuring faces touch eac<br>nension as 17.28 mm. The corr<br>17.24 mm                                                   | thimble<br>ch other.<br>rect read<br>(2) | in scale division of 0.5 mm and shows reading of +4 divisions. This micrometer has read one ing is  17.32 mm  17.30 mm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | (3)                                                                                                                             | 17.20 Itult                                                                                                                                               | (4)                                      | 17.50 tunt                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 35. |                                                                                                                                 | •                                                                                                                                                         | _                                        | ; following method or set-up:                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | (1)<br>(3)                                                                                                                      | Interferometry Still water micrometer                                                                                                                     | (2)<br>(4)                               | Tool maker's microscope<br>Height Vernier                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 36. | In a                                                                                                                            |                                                                                                                                                           |                                          | es inspected per lot will be                                                                                           | entre financia de la processa de la  |  |  |  |  |
|     | plar                                                                                                                            | as compared to double sampling and multiple sampling plans.                                                                                               |                                          |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | (1)                                                                                                                             | greater than                                                                                                                                              | (2)                                      | smaller than                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | (3)                                                                                                                             | equal                                                                                                                                                     | (4)                                      | none of the above                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 37. | (1)<br>(2)<br>(3)<br>(4)                                                                                                        | he inspection by attributes<br>variation due to assignable<br>good quantities are separat<br>variations due to chance fac<br>theory of probability is app | factors a<br>ed from<br>ctors are        | ire determined<br>bad                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 38. | H <sub>7</sub> g                                                                                                                | g <sub>6</sub> (H-seven g-six) gives the fo                                                                                                               | llowing                                  | fit:                                                                                                                   | A STATE OF THE STA |  |  |  |  |
|     | (1)                                                                                                                             | Interference fit                                                                                                                                          | (2)                                      | Transition fit                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | (3)                                                                                                                             | Precision run fit                                                                                                                                         | (4)                                      | Wide clearance fit                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 39. | Wear allowance is provided on                                                                                                   |                                                                                                                                                           |                                          |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     |                                                                                                                                 | (1) 'No Go' gauge                                                                                                                                         |                                          |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | <ul><li>(2) Both 'No Go' and 'Go' gauges</li><li>(3) 'Go' gauge</li></ul>                                                       |                                                                                                                                                           |                                          |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | (4) Neither 'Go' nor 'No Go' gauge                                                                                              |                                                                                                                                                           |                                          |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 40. | The                                                                                                                             | The OC curve is a graph between                                                                                                                           |                                          |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | (1)                                                                                                                             | (1) percent bad vs. probability of rejection                                                                                                              |                                          |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | <ul><li>(2) probability of lot vs. probability of defects</li><li>(3) percent defective vs. probability of acceptance</li></ul> |                                                                                                                                                           |                                          |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | (3)<br>(4)                                                                                                                      | None of the above                                                                                                                                         | omity of a                               | ассерансе                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 41. | In a                                                                                                                            | lignment test of lathe machin                                                                                                                             | ie, auto-c                               | ollimator is used to check                                                                                             | 4 8877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|     | (1)                                                                                                                             | true running of spindle                                                                                                                                   |                                          |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | (2)                                                                                                                             | pitch error of lead-screw                                                                                                                                 |                                          |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | (3)<br>(4)                                                                                                                      | carriage movement paralle flatness of bed                                                                                                                 | l to spine                               | tle axis                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | (4)                                                                                                                             | MANUST OF GOOD                                                                                                                                            |                                          |                                                                                                                        | D.T. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|     |                                                                                                                                 |                                                                                                                                                           | 9                                        |                                                                                                                        | P.T.O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |

(4)

Reluctance

Resistance

Resistance

Reluctance

| CDD |   |   |   |
|-----|---|---|---|
|     | C | O | ľ |

| 51.     | A                                                             | A d.c. motor draws power from the mains which is essentially controlled by                                                                                                                                                                      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|---------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|         | /1)                                                           | (1) the load on the motor                                                                                                                                                                                                                       |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|         | (2)                                                           | the current on full load                                                                                                                                                                                                                        | d of the moto                                                                                                             | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|         | (3)                                                           | the rated supply volta                                                                                                                                                                                                                          |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|         | (4)                                                           | the no-load current of                                                                                                                                                                                                                          | ~                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 52.     |                                                               | What could be the possible faults if a capacitor-start induction run motor fails to start when switched on to its proper supply?                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|         | (1)                                                           | (1) open in connection to line                                                                                                                                                                                                                  |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|         | (2)                                                           | (2) open circuit in motor main                                                                                                                                                                                                                  |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|         | (3)                                                           | centrifugal switch con                                                                                                                                                                                                                          | •                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|         | (4)                                                           | all of (1), (2) and (3) ab                                                                                                                                                                                                                      | oove                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 53.     |                                                               | series R-L-C circuit, $R = \frac{1}{2}$                                                                                                                                                                                                         |                                                                                                                           | 7 ohms. What should be the value of capacitive the circuit be 0.707 lag?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|         | (1)                                                           | 5 ohms                                                                                                                                                                                                                                          | (2)                                                                                                                       | 2 ohms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|         | (3)                                                           | 7 ohms                                                                                                                                                                                                                                          | (4)                                                                                                                       | 12 ohms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 54.     | is d                                                          | A three phase delta connected a. c. motor connected to a 3-phase, 400 volts, 50 Hz syste is developing 25.6 KW at an efficiency of 80% and a power factor of 0.8. The phacurrent in the circuit is                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|         | (1)                                                           | $\frac{100}{\sqrt{3}}$ amp                                                                                                                                                                                                                      |                                                                                                                           | $\frac{100}{3}$ amp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|         | (2)                                                           | 64 amp                                                                                                                                                                                                                                          | (4)                                                                                                                       | $100\sqrt{3}$ amp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|         | (3)                                                           | 0 2 W.I.P                                                                                                                                                                                                                                       | (1)                                                                                                                       | Too your.p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| <br>55. | A se                                                          | eries R-C circuit with R<br>th 'T'. For what value o                                                                                                                                                                                            | = 10 KΩ and<br>f 'T', the way                                                                                             | d C = 10 μf is allowed to charge during a pulse reform across C will show linear characteristic?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| <br>55. | A se<br>wid<br>Give                                           | eries R-C circuit with R th 'T'. For what value o                                                                                                                                                                                               | = $10 \text{ K}\Omega$ and f 'T', the way                                                                                 | $C = 10 \mu f$ is allowed to charge during a pulse reform across C will show linear characteristic?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 55.     | A se wid Give (1)                                             | eries R-C circuit with R<br>th 'T'. For what value o                                                                                                                                                                                            | = $10 \text{ K}\Omega$ and f 'T', the way                                                                                 | $H C = 10 \mu f$ is allowed to charge during a pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|         | A se wid Give (1) (3)                                         | eries R-C circuit with R th 'T'. For what value o e your choice of correct a T = 5 secs T = 0.1 sec  ansformer has iron losse the following statements                                                                                          | = 10 KΩ and f 'T', the way answer: (2) (4)                                                                                | If $C = 10 \mu f$ is allowed to charge during a pulse reform across $C$ will show linear characteristic?<br>$C = 10 \mu f$ is allowed to charge during a pulse reform across $C$ will show linear characteristic?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|         | A se wid Give (1) (3)  A tr of the                            | eries R-C circuit with R th 'T'. For what value o e your choice of correct a T = 5 secs T = 0.1 sec  ansformer has iron losse the following statements                                                                                          | = 10 KΩ and f 'T', the way answer:  (2) (4) es of 'p' watts s correctly re  (2)                                           | T = 1 sec T = 0.05 sec  and full load copper losses of '2p' watts. Which present 'total losses' in the transformer at half                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 55.     | A se wid Give (1) (3)  A tr of the load                       | eries R-C circuit with R th 'T'. For what value o e your choice of correct a T = 5 secs T = 0.1 sec  ansformer has iron losse the following statements 1?                                                                                       | = 10 KΩ and f 'T', the way answer:  (2) (4) es of 'p' watts s correctly re  (2)                                           | $C = 10 \mu f$ is allowed to charge during a pulse reform across C will show linear characteristic?<br>T = 1  sec<br>T = 0.05  sec<br>and full load copper losses of '2p' watts. Which present 'total losses' in the transformer at half                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| <br>56. | A se wid Give (1) (3)  A tr of the load (1) (3)               | eries R-C circuit with R th 'T'. For what value of e your choice of correct a $T = 5$ secs $T = 0.1$ sec  ansformer has iron losse the following statements $\frac{3p}{4}$ watts                                                                | = 10 KΩ and f 'T', the way answer:  (2) (4) es of 'p' watts correctly re  (2) (4)                                         | T = 1 sec T = 0.05 sec  and full load copper losses of '2p' watts. Which present 'total losses' in the transformer at half                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| <br>56. | A se wid Give (1) (3)  A tr of the load (1) (3)               | eries R-C circuit with R th 'T'. For what value of e your choice of correct a $T = 5$ secs $T = 0.1$ sec  ansformer has iron losse the following statements $\frac{3p}{4}$ watts                                                                | = 10 KΩ and f 'T', the way answer:  (2) (4) es of 'p' watts correctly re  (2) (4)                                         | T = 1 sec T = 0.05 sec  and full load copper losses of '2p' watts. Which present 'total losses' in the transformer at half  p watts $\frac{3p}{2}$ watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| <br>56. | A see wid Give (1) (3)  A tr of the load (1) (3)              | eries R-C circuit with R th 'T'. For what value o e your choice of correct a T = 5 secs T = 0.1 sec  ansformer has iron losse the following statements 1? 3p watts 3p 4 watts  UJT saw-tooth time base                                          | = 10 KΩ and f 'T', the way answer:  (2) (4) es of 'p' watts s correctly re  (2) (4)                                       | If $C = 10  \mu f$ is allowed to charge during a pulse reform across $C$ will show linear characteristic? $C = 1  sec$ $C = 1  sec$ $C = 0.05  sec$ and full load copper losses of '2p' watts. Which present 'total losses' in the transformer at half $C = 1  sec$ $C$ |  |  |  |  |  |
| <br>56. | A se wid Give (1) (3)  A tr of the load (1) (3)  In a (a)     | eries R-C circuit with R th 'T'. For what value o e your choice of correct a T = 5 secs T = 0.1 sec  ansformer has iron losse the following statements 1? 3p watts 3p watts UJT saw-tooth time base emitter resistance                          | = 10 KΩ and f 'T', the way answer:  (2) (4) es of 'p' watts correctly re  (2) (4) e generator, the across emitted answer. | If $C = 10  \mu f$ is allowed to charge during a pulse reform across $C$ will show linear characteristic? $C = 1  sec$ $C = 1  sec$ $C = 0.05  sec$ and full load copper losses of '2p' watts. Which present 'total losses' in the transformer at half $C = 1  sec$ $C$ |  |  |  |  |  |
|         | A se wid Give (1) (3)  A tr of the load (1) (3)  In a (a) (b) | eries R-C circuit with R th 'T'. For what value o e your choice of correct a T = 5 secs T = 0.1 sec  ansformer has iron losse the following statements 1? 3p watts 3p 4 watts  UJT saw-tooth time base emitter resistance capacitance connected | = 10 KΩ and f 'T', the way answer:  (2) (4) es of 'p' watts correctly re  (2) (4) e generator, the across emitted answer. | $C = 10  \mu f$ is allowed to charge during a pulse reform across C will show linear characteristic?<br>$T = 1  \text{sec}$ $T = 0.05  \text{sec}$ and full load copper losses of '2p' watts. Which present 'total losses' in the transformer at half $p$ watts $\frac{3p}{2}$ watts the frequency of oscillation depends upon and base $b_2$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |

| <b>•</b> | For d.c. calculations of the circuit, a reverse-biased diode appears as                                    |                                                                                                                          |           |                                                                                        |  |  |  |  |
|----------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------|--|--|--|--|
| 58.      | (1)                                                                                                        | a capacitance                                                                                                            | a rever   | an 'ON' switch                                                                         |  |  |  |  |
|          | (3)                                                                                                        | a low resistance                                                                                                         | (4)       |                                                                                        |  |  |  |  |
| 59.      | For                                                                                                        | normal working of a transisto                                                                                            | r         |                                                                                        |  |  |  |  |
|          | (a)                                                                                                        | collector base is reverse biase                                                                                          |           |                                                                                        |  |  |  |  |
|          | (b)                                                                                                        |                                                                                                                          |           | collector base is reverse biased                                                       |  |  |  |  |
|          | (c)                                                                                                        | is reverse biased                                                                                                        |           | mitter base is forward biased and collector base                                       |  |  |  |  |
|          | (d)                                                                                                        | emitter base is always revers                                                                                            | e biase   | ed .                                                                                   |  |  |  |  |
|          | Ans                                                                                                        | swers                                                                                                                    |           |                                                                                        |  |  |  |  |
|          | (1)                                                                                                        | only (d) is true                                                                                                         | (2)       | (c) and (d) are true                                                                   |  |  |  |  |
|          | (3)                                                                                                        | (b), (c) and (d) are true                                                                                                | (4)       | All four are true                                                                      |  |  |  |  |
| 60.      | Silic                                                                                                      | con controlled rectifiers are wid                                                                                        | dely us   | ed for                                                                                 |  |  |  |  |
|          | (1)                                                                                                        | amplification of frequency                                                                                               | (2)       | power control                                                                          |  |  |  |  |
|          | (3)                                                                                                        | production of oscillations                                                                                               | (4)       | voltage amplification                                                                  |  |  |  |  |
| 61.      | A pure inductor of 0.1 H is carrying a current of 10 sin(2t). What is the voltage drop across the element? |                                                                                                                          |           |                                                                                        |  |  |  |  |
|          | (1)                                                                                                        | 1 volt                                                                                                                   | (2)       | sin(2t) volts                                                                          |  |  |  |  |
|          | (3)                                                                                                        | cos(2t) volts                                                                                                            | (4)       | 2 cos(2t) volts                                                                        |  |  |  |  |
| 62.      | An output of an LVDT is obtained by connecting the two secondaries                                         |                                                                                                                          |           |                                                                                        |  |  |  |  |
|          | (1)                                                                                                        | l) in parallel and in phase opposition                                                                                   |           |                                                                                        |  |  |  |  |
|          | (2)                                                                                                        |                                                                                                                          |           |                                                                                        |  |  |  |  |
|          | (3)                                                                                                        |                                                                                                                          |           |                                                                                        |  |  |  |  |
|          | (4)                                                                                                        | in parallel and in same phase                                                                                            | condi     | tion                                                                                   |  |  |  |  |
| 63.      | -                                                                                                          | JFET is                                                                                                                  |           |                                                                                        |  |  |  |  |
|          | (1)                                                                                                        |                                                                                                                          |           |                                                                                        |  |  |  |  |
|          |                                                                                                            | (2) voltage-sensitive device                                                                                             |           |                                                                                        |  |  |  |  |
|          |                                                                                                            | <ul><li>(3) device that has very low input impedance</li><li>(4) device that has very low amplification factor</li></ul> |           |                                                                                        |  |  |  |  |
|          | (4)                                                                                                        | device that has very low amp                                                                                             | olificati | on factor                                                                              |  |  |  |  |
| 64.      |                                                                                                            | sider the following statements                                                                                           |           |                                                                                        |  |  |  |  |
|          |                                                                                                            | son (R): Incident photons                                                                                                | of suffi  | conductive cell increases when illuminated.<br>cient energy raise valence electrons to |  |  |  |  |
|          | C 1                                                                                                        | conduction band.                                                                                                         |           |                                                                                        |  |  |  |  |
|          |                                                                                                            | ct your answer from the follow                                                                                           |           |                                                                                        |  |  |  |  |
|          | (1)                                                                                                        | Both A and R are true and R                                                                                              |           | •                                                                                      |  |  |  |  |
|          | (2)<br>(3)                                                                                                 | Both A and R are true but R i<br>A is true but R is false                                                                | s nor ti  | ne true reason for A                                                                   |  |  |  |  |
|          | (3)<br>(4)                                                                                                 | A is true but R is raise  A is false but R is true                                                                       |           |                                                                                        |  |  |  |  |
|          | (1)                                                                                                        | A 15 TOISE OUT IX IS IT UE                                                                                               |           |                                                                                        |  |  |  |  |

| <b>SPD</b> 65. | This                                                                                                                                                                                                   | - symbol stands for                            |        | •                       |  |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------|-------------------------|--|--|--|--|
|                | (1)                                                                                                                                                                                                    | <b>→</b><br>Diode                              | (2)    | Zener diode             |  |  |  |  |
|                | (3)                                                                                                                                                                                                    | Transistor                                     | (4)    | Rectifier               |  |  |  |  |
| 66.            | Ripple factor of a power supply is a measure of                                                                                                                                                        |                                                |        |                         |  |  |  |  |
|                | (1)                                                                                                                                                                                                    | its voltage regulation                         |        |                         |  |  |  |  |
|                | (2)                                                                                                                                                                                                    | purity of its output                           |        |                         |  |  |  |  |
|                | (3)                                                                                                                                                                                                    | its filter efficiency                          |        |                         |  |  |  |  |
|                | (4)                                                                                                                                                                                                    | diode rating                                   |        |                         |  |  |  |  |
| 67.            | A resistive load is fed from output of a diode bridge. The load voltage will be closer to d.c. if                                                                                                      |                                                |        |                         |  |  |  |  |
|                | (1)                                                                                                                                                                                                    | series resistor is used                        |        |                         |  |  |  |  |
|                | (2)                                                                                                                                                                                                    | 2) shunt capacitor is used                     |        |                         |  |  |  |  |
|                | (3)                                                                                                                                                                                                    | (3) SCR bridge is used instead of diode bridge |        |                         |  |  |  |  |
|                | (4) triac is used instead of diode bridge                                                                                                                                                              |                                                |        |                         |  |  |  |  |
| 68.            | A Zener diode works on the principle of                                                                                                                                                                |                                                |        |                         |  |  |  |  |
|                | (1)                                                                                                                                                                                                    |                                                |        |                         |  |  |  |  |
|                | (2)                                                                                                                                                                                                    |                                                |        |                         |  |  |  |  |
|                | (3)                                                                                                                                                                                                    | Avalanche effect                               |        |                         |  |  |  |  |
|                | (4) both Zener effect and Avalanche effect                                                                                                                                                             |                                                |        |                         |  |  |  |  |
| 69.            | A full wave rectifier with a capacitor filter is used to provide the required d.c. voltage. The rectifier circuit is operated using 230 volts/12–0–12 volts transformer. The no-load output voltage is |                                                |        |                         |  |  |  |  |
|                | (1)                                                                                                                                                                                                    | 12 volts                                       | (2)    | 16.968 volts            |  |  |  |  |
|                | (3)                                                                                                                                                                                                    | 24 volts                                       | (4)    | 33.936 volts            |  |  |  |  |
| 70.            | Thro                                                                                                                                                                                                   | ough which terminal of FET, ma                 | jority | charge carriers enter ? |  |  |  |  |
|                | (1)                                                                                                                                                                                                    | Channel                                        | (2)    | Gate                    |  |  |  |  |
|                | (3)                                                                                                                                                                                                    | Source                                         | (4)    | Drain                   |  |  |  |  |

(1)

(4)  $\frac{1}{L}$ 

- If material expands freely due to heating, it will develop
  - Thermal stresses
- (2) Tensile stresses
- Compressive stresses
- (4) No stress
- The total strain energy stored in a body is termed as
  - Resilience

- (2) Proof resilience
- Modulus of resilience
- (4) Toughness
- According to Euler's theory, the strength of a column against buckling is dependent
  - (1)Modulus of elasticity
- (2) Bulk modulus
- Cross-section area of column (4) None of the above
- In a beam at a place where the shear force is maximum, the bending moment will be 75.
  - (1)maximum
  - (2) minimum
  - (3) zero
  - (4) neither maximum nor minimum
- A beam is said to be of uniform strength if
  - Bending moment is same throughout the beam.
  - (2) Shear stress is same throughout the beam.
  - Deflection is same throughout the beam. (3)
  - Bending stress is same at every section along its longitudinal axis. (4)
- Maximum shear stress in Mohr's circle is
  - Equal to radius of Mohr's circle (1)
  - Greater than radius of Mohr's circle (2)
  - (3) Less than radius of Mohr's circle
  - None of the above (4)
- The constant term 'a' for Rankine's formula is called Rankine's constant and is given by : 78. where f = vield stress in component

E == Modulus of elasticity

$$(1) \quad a = \frac{f_c}{\pi^2 E}$$

(2) 
$$a = \frac{f_c}{\pi E}$$

$$(3) \quad a = \frac{f_c^2}{\pi E}$$

$$(4) \quad a = \frac{f_c \pi^2}{v}$$

| <b>SPD</b> 79. | What is the angle between plane of maximum shear with principal plane?                                         |                                         |                   |                                            |  |  |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------|--------------------------------------------|--|--|--|--|
| 79.            | (1)                                                                                                            | at is the angle between pia<br>- 90°    | me or maxi<br>(2) | mum shear with principal plane ?<br>45°    |  |  |  |  |
|                | (3)                                                                                                            | 60°                                     | (4)               | 0°                                         |  |  |  |  |
| 80.            | If a shaft is designed to take combined bending moment (M) and torsion (T), then the equivalent torque will be |                                         |                   |                                            |  |  |  |  |
|                | (1)                                                                                                            | $\sqrt{M^2 + \overline{T}^2}$           | (2)               | $\frac{1}{2}\left[M+\sqrt{M^2+T^2}\right]$ |  |  |  |  |
|                | (3)                                                                                                            | $\frac{1}{2} \sqrt{M^2 + T^2} \qquad .$ | (4)               | $M + \sqrt{M^2 + T^2}$                     |  |  |  |  |
| 81.            | Hoc                                                                                                            | op stress $\sigma$ in a thin cylinde    | er is given l     | by the formula,                            |  |  |  |  |
|                | whe                                                                                                            | ere D = Diameter of cylind              | er, P = Loa       | d applied, t = Thickness                   |  |  |  |  |
|                | (1)                                                                                                            | $\sigma = \frac{PD}{2t}$                | (2)               | $\sigma = \frac{PD}{4t}$                   |  |  |  |  |
|                |                                                                                                                |                                         |                   |                                            |  |  |  |  |
|                | (3)                                                                                                            | $\sigma = \frac{PD}{t}$                 | (4)               | $\sigma = \frac{PD}{8t}$                   |  |  |  |  |
| 82.            | Working of metals at temperature below their re-crystallisation temperature is defined a                       |                                         |                   |                                            |  |  |  |  |
|                | (1)                                                                                                            | Hot working                             | (2)               | Cold working                               |  |  |  |  |
|                | (3)                                                                                                            | Hot spinning                            | (4)               | Cold spinning                              |  |  |  |  |
| 83.            | Hollow cylindrical bodies like water pipes, gun barrels etc., can be manufactured by                           |                                         |                   |                                            |  |  |  |  |
|                | (1)                                                                                                            | Investment casting                      | (2)               | Die casting                                |  |  |  |  |
|                | (3)                                                                                                            | Centrifugal casting                     | (4)               | Shell moulding                             |  |  |  |  |
| 84.            | Split nut in lead screw mechanism of lathe has threads.                                                        |                                         |                   |                                            |  |  |  |  |
|                |                                                                                                                | Vee                                     |                   | Square                                     |  |  |  |  |
|                | (3)                                                                                                            | Buttress                                | (4)               | Acme                                       |  |  |  |  |
| 85.            | Work holding device used for hollow cylindrical bar on lathe is                                                |                                         |                   |                                            |  |  |  |  |
|                | (1)                                                                                                            | Chuck                                   | (2)               | Arbour                                     |  |  |  |  |
|                | (3)                                                                                                            | Mandrel                                 | (4)               | Magnetic chuck                             |  |  |  |  |
| 86.            | The                                                                                                            | main difference between                 | a shaper an       | d a planer is                              |  |  |  |  |
|                | (1)                                                                                                            | A shaper is smaller in size             |                   |                                            |  |  |  |  |
|                | (2)                                                                                                            |                                         | •                 | while a planer is mechanically operated    |  |  |  |  |
|                | (3)                                                                                                            | Number of cutting tools                 |                   |                                            |  |  |  |  |
|                | (4)                                                                                                            | Cutting tool is stationary              | rin planer v      | while cutting tool moves in shaper         |  |  |  |  |
| 87.            | Thermo-plastic material such as cellulose nitrate, polystyrene are cast by                                     |                                         |                   |                                            |  |  |  |  |

(4) die casting

(1) continuous casting (2) centrifugal casting

(3) injection moulding

| <b>\$</b> |                                                                                               |                                                               |                 | . SPE                                           |  |  |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------|-------------------------------------------------|--|--|--|--|--|
| 88.       | Mil                                                                                           | ling of curved irregular surfac                               | es is po        | ssible with                                     |  |  |  |  |  |
|           | (1)                                                                                           | shaper                                                        | (2)             | vertical column and knee milling machine        |  |  |  |  |  |
|           | (3)                                                                                           | plane milling                                                 | (4)             | none of the above                               |  |  |  |  |  |
| 89.       | Shock resisting steel is mainly used for                                                      |                                                               |                 |                                                 |  |  |  |  |  |
|           | (1)                                                                                           | leaf and coil spring                                          | (2)             | hammers and chisels                             |  |  |  |  |  |
|           | (3)                                                                                           | cranks and piston rods                                        | (4)             | loco wheels and rails                           |  |  |  |  |  |
| 90.       |                                                                                               | at are the changes of metal dip<br>ough the rolls ?           | mensior         | ns in hot rolling process as the metal passes   |  |  |  |  |  |
|           | (1)                                                                                           |                                                               |                 |                                                 |  |  |  |  |  |
|           | (2)                                                                                           | Reduced in thickness and ir                                   | n length        |                                                 |  |  |  |  |  |
|           | (3)                                                                                           | Increased in thickness and r                                  | educed          | in length                                       |  |  |  |  |  |
|           | (4)                                                                                           | Increased in thickness and i                                  | n length        | n .                                             |  |  |  |  |  |
| 91.       | Which process is used to produce tools, gear blanks, crankshafts, connecting rods, ge etc. ?  |                                                               |                 |                                                 |  |  |  |  |  |
|           | (1)                                                                                           | Forging                                                       | (2)             | Smithing                                        |  |  |  |  |  |
|           | (3)                                                                                           | Swaging                                                       | (4)             | Fullering                                       |  |  |  |  |  |
| 92.       | Which is the process of removing thick layers of metal by means of Cold Chisel?               |                                                               |                 |                                                 |  |  |  |  |  |
|           | (1)                                                                                           | Cutting                                                       | (2)             | Sawing                                          |  |  |  |  |  |
|           | (3)                                                                                           | Chipping                                                      | (4)             | None of the above                               |  |  |  |  |  |
| 93.       | Drill size before tapping is derived from the formula                                         |                                                               |                 |                                                 |  |  |  |  |  |
|           | where 'D' is diameter of tap drill size, 'T' is diameter of tap to be used and 'd' is depth o |                                                               |                 |                                                 |  |  |  |  |  |
|           | (1)                                                                                           | D = T + 2d                                                    | (2)             | D = T - 2d                                      |  |  |  |  |  |
|           | (3)                                                                                           | D = T + 3d                                                    | (4)             | D = T - 3d                                      |  |  |  |  |  |
| 94.       | What are conditions which tend to promote the formation of built-up edge of cutting tool?     |                                                               |                 |                                                 |  |  |  |  |  |
|           | (1)                                                                                           |                                                               |                 |                                                 |  |  |  |  |  |
|           | (2) High cutting speed, low rake angle and high speed                                         |                                                               |                 |                                                 |  |  |  |  |  |
|           | (3)                                                                                           |                                                               |                 |                                                 |  |  |  |  |  |
|           | (4)                                                                                           | Low cutting speed, high rak                                   | ke angle        | and low feed                                    |  |  |  |  |  |
| 95.       |                                                                                               |                                                               |                 | or finishing a hole previously drilled, bored o |  |  |  |  |  |
|           | (1)                                                                                           | ed to give a good finish and ai<br>Parallel shank twist drill | a accura<br>(2) | te dimension ?  Taper shank core drill          |  |  |  |  |  |
|           |                                                                                               |                                                               |                 | •                                               |  |  |  |  |  |
|           | (3)                                                                                           | Reamer                                                        | (4)             | Multi-tooth twist cutter                        |  |  |  |  |  |

| SPD  |                                                                                                                                     |                                                                                                                                                                                                     |        |                    |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|--|--|--|--|--|
| 96.  | Precision grinders are those that finish parts to a very accurate dimensions. One of the grinders is                                |                                                                                                                                                                                                     |        |                    |  |  |  |  |  |
|      | (1)                                                                                                                                 |                                                                                                                                                                                                     |        |                    |  |  |  |  |  |
|      | (2)                                                                                                                                 | Abrasive belt grinder                                                                                                                                                                               |        |                    |  |  |  |  |  |
|      | (3)                                                                                                                                 | Surface grinder                                                                                                                                                                                     |        |                    |  |  |  |  |  |
|      | (4)                                                                                                                                 | Portable and flexible shaft g                                                                                                                                                                       | rinder |                    |  |  |  |  |  |
| 97.  | surf                                                                                                                                | Which is a process that is used to produce geometrically true surface, correct minor surface, imperfections, improve dimensional accuracy or provide a very close fit between two contact surfaces? |        |                    |  |  |  |  |  |
|      | (1)                                                                                                                                 | Honing                                                                                                                                                                                              | (2)    | Polishing          |  |  |  |  |  |
|      | (3)                                                                                                                                 | Lapping                                                                                                                                                                                             | (4)    | Buffing            |  |  |  |  |  |
| 98.  | The                                                                                                                                 | purpose of annealing is                                                                                                                                                                             |        |                    |  |  |  |  |  |
|      | (1)                                                                                                                                 | to refine structure                                                                                                                                                                                 | (2)    | to reduce softness |  |  |  |  |  |
|      | (3)                                                                                                                                 | to improve machinability                                                                                                                                                                            | (4)    | none of the above  |  |  |  |  |  |
| 99.  | Cho                                                                                                                                 | Choose the wrong statement from the following:                                                                                                                                                      |        |                    |  |  |  |  |  |
|      | (1)                                                                                                                                 | (1) The shaper in comparison to planer is easier to operate and about three times quicker in action.                                                                                                |        |                    |  |  |  |  |  |
|      | (2)                                                                                                                                 | •                                                                                                                                                                                                   |        |                    |  |  |  |  |  |
|      | (3)                                                                                                                                 |                                                                                                                                                                                                     |        |                    |  |  |  |  |  |
|      | (4)                                                                                                                                 | In case of planer, reciprocating motion is given to the cutting tool.                                                                                                                               |        |                    |  |  |  |  |  |
| 100. | The orthogonal cutting takes place when cutting face of tool is at one of the angles mentioned below to the line of action of tool. |                                                                                                                                                                                                     |        |                    |  |  |  |  |  |
|      | (1)                                                                                                                                 | 45°                                                                                                                                                                                                 | (2)    | 60°                |  |  |  |  |  |
|      | (3)                                                                                                                                 | 90°                                                                                                                                                                                                 | (4)    | 120°               |  |  |  |  |  |
| 101. | Which one of the following is most suitable to hold the job for drilling hole on the curved surface?                                |                                                                                                                                                                                                     |        |                    |  |  |  |  |  |
|      | (1)                                                                                                                                 | Angle plate                                                                                                                                                                                         | (2)    | Table with T-slot  |  |  |  |  |  |
|      | (3)                                                                                                                                 | Vee-Block                                                                                                                                                                                           | (4)    | None of these      |  |  |  |  |  |
| 102. | A b                                                                                                                                 | A body of weight 1000 N is moved on a horizontal plane having coefficient of friction                                                                                                               |        |                    |  |  |  |  |  |
|      | $\frac{1}{\sqrt{3}}$                                                                                                                | $\frac{1}{\sqrt{3}}$ . The minimum force applied parallel to the horizontal plane to move the body is                                                                                               |        |                    |  |  |  |  |  |
|      | (1)                                                                                                                                 | $1000\sqrt{3}$                                                                                                                                                                                      | (2)    | 1000               |  |  |  |  |  |
|      | (3)                                                                                                                                 | $\frac{1000}{\sqrt{3}}$                                                                                                                                                                             | (4)    | 500                |  |  |  |  |  |
| 103. |                                                                                                                                     | efficiency of screw jack                                                                                                                                                                            |        |                    |  |  |  |  |  |
|      | (1)                                                                                                                                 | depends on load on jack                                                                                                                                                                             |        |                    |  |  |  |  |  |

depends on the pitch of the screw threads of the jack

depends on both (1) and (2)

(4) does not depend combinedly on (1) and (2)

(2) (3)

maximum at the centre of the contact area

(4) zero at the maximum radius of the contact area

(2) zero at the centre of the contact area(3) uniform throughout the contact area

| C | E  | 1  |
|---|----|----|
|   | 1. | ., |

| 112. | Specific sp | peed of the | hydraulic | turbine is | given l | ov followi | ng equa | tion : |
|------|-------------|-------------|-----------|------------|---------|------------|---------|--------|
|      |             |             |           |            |         |            |         |        |

 $(1) N_S = \frac{N.P}{\sqrt{H}}$ 

(2)  $N_{S} = \frac{N\sqrt{P}}{11}$ (4)  $N_{S} = \frac{N\sqrt{P}}{11^{3/4}}$ 

#### 113. Falling drops of rain acquire spherical shape on account of

(1) viscocity

- surface tension (2)
- adhesion and cohesion (3)
- (4)compressibility

#### 114. The standard atmospheric pressure of air is

- (a) 760 mm of mercury
- (b) 10.33 metres of water column
- (c) 1.0332 atm
- (d)  $101.325 \, \text{KN/m}^2$
- (1) (a) alone is correct
- (2) (a) and (b) are correct
- (3) (a), (b) and (c) are correct
- (4)all are correct

#### 115. The centre of gravity of the volume of the liquid dispersed by an immersed body is called as

- (1)centre of pressure
- (2) meta-centre
- centre of buoyancy
- (4)centre of gravity

#### 116. Which of the following represents steady uniform flow?

- Flow through a diverging duct at increasing rate
- (2) Flow through a diverging duct at any decreasing rate
- (3)Flow through a long pipe at constant rate
- Flow through a long pipe at decreasing rate

#### 117. Cavitation in hydraulic turbine results in

- (1) noise and vibration
- (2) reduction of discharge
- (3) drop in output and efficiency
- (4) all of the above

#### 118. For pumping viscous oil, the pump used is

- Centrifugal pump
- Reciprocating pump (2)
- (3)Turbine pump
- (4)Screw pump

#### 119. A pump which does not come in category of positive displacement pump is

- (1) Reciprocating pump
- Gear pump (2)
- (3)Vane pump

(4)Centrifugal pump

| •    |      |                                 |          | SPD                                           |  |  |  |  |  |
|------|------|---------------------------------|----------|-----------------------------------------------|--|--|--|--|--|
| 120. |      | water turbine selected for hea  | -        | C .                                           |  |  |  |  |  |
|      | (1)  | Bulb turbine                    | (2)      | Propeller turbine                             |  |  |  |  |  |
|      | (3)  | Pelton wheel                    | (4)      | Francis turbine                               |  |  |  |  |  |
| 121. | Airy | v vessels are provided in recip | rocatin  | g pump                                        |  |  |  |  |  |
|      | (1)  | to store air discharged by pu   | ımp      |                                               |  |  |  |  |  |
|      | (2)  | to obtain continuous dischar    | rge fron | n the pump                                    |  |  |  |  |  |
|      | (3)  | to increase the pressure of w   | ater     |                                               |  |  |  |  |  |
|      | (4)  | to safeguard the pump           |          |                                               |  |  |  |  |  |
| 122. | Petr | roleum can be classified as     |          |                                               |  |  |  |  |  |
|      | (1)  | a renewable form of energy      | source   |                                               |  |  |  |  |  |
|      | (2)  | a non-renewable form of ene     |          | urce                                          |  |  |  |  |  |
|      | (3)  | a non-conventional form of e    | energy   | source                                        |  |  |  |  |  |
|      | (4)  | none of the above               |          |                                               |  |  |  |  |  |
| 123. | Disa | ndvantage of using solar energ  | gy for p | ower production is                            |  |  |  |  |  |
|      | (1)  | energy available in daytime     | only     |                                               |  |  |  |  |  |
|      | (2)  | initial cost is high            |          |                                               |  |  |  |  |  |
|      | (3)  | requirement of large area for   | r harne: | ssing solar energy                            |  |  |  |  |  |
|      | (4)  | all of the above                |          |                                               |  |  |  |  |  |
| 124. | Sola | r cells are made of             |          |                                               |  |  |  |  |  |
|      | (1)  | Silica                          | (2)      | Antimony                                      |  |  |  |  |  |
|      | (3)  | Carbon                          | (4)      | Steel                                         |  |  |  |  |  |
| 125. | Whi  | ch of the following devices ca  | n be us  | ed to harness solar energy ?                  |  |  |  |  |  |
|      | (1)  | Photo-voltaic cell              | (2)      | Wind mill                                     |  |  |  |  |  |
|      | (3)  | Gas turbine                     | (4)      | Steam turbine                                 |  |  |  |  |  |
| 126. | Whe  | en can we have windmill for p   | ower ?   |                                               |  |  |  |  |  |
|      | (1)  | *                               |          |                                               |  |  |  |  |  |
|      | (2)  |                                 |          |                                               |  |  |  |  |  |
|      | (3)  | Low velocity wind is constant   | ntly ava | ailable                                       |  |  |  |  |  |
|      | (4)  | Movement of air occurs          |          |                                               |  |  |  |  |  |
| 127. | Whi  | ch one of the following is corr | ect stat | ement ?                                       |  |  |  |  |  |
|      | (1)  | Latent heat is the heat that d  | oes not  | follow first law of thermodynamics.           |  |  |  |  |  |
|      | (2)  |                                 |          | quired to change the substance from solid to  |  |  |  |  |  |
|      | (3)  | Latent heat is the heat that ca | an be d  | etected.                                      |  |  |  |  |  |
|      | (4)  | Latent heat is the heat req     | uired 1  | to change a state of substance from liquid to |  |  |  |  |  |

gaseous state.

| 128. | In s  | team   | bowe     | r plan  | t, thern  | ıodynan        | nic cy | rcle used is                                 |
|------|-------|--------|----------|---------|-----------|----------------|--------|----------------------------------------------|
|      | (1)   | Brag   | yton     |         |           |                | (2)    | Rankine                                      |
|      | (3)   | Car    | not      |         |           |                | (4)    | Joule                                        |
| 129. | Mat   | ch Lis | st-I co  | rrectl  | y with I  | <br>_ist-II an | d sel  | ect your answer using the code given below : |
|      |       | List   | -I       |         | •         |                |        | List-II                                      |
|      | (A)   | Stea   | ım En    | gine    |           |                | I.     | Spark plug                                   |
|      | (B)   | Stea   | ım Tu    | rbine   |           |                | II.    | Eccentric                                    |
|      | (C)   | Otto   | o cycle  | e Engi  | ne        |                | III.   | Manhole                                      |
|      | (D)   | Boil   | er       |         |           |                | IV.    | Fixed and moving blades                      |
|      |       | (A)    | (B)      | (C)     | (D)       |                |        |                                              |
|      | (1)   | $\Pi$  | IV       | 1       | $\Pi\Pi$  |                |        |                                              |
|      | (2)   | III    | $\Pi$    | I       | IV        |                |        |                                              |
|      | (3)   | IV     | III      | II      | I         |                |        |                                              |
|      | (4)   | I      | III      | IV      | II        |                |        |                                              |
| 130. | The   | fuel r | nostly   | usec    | l in Stea | m Boiler       | s is   |                                              |
|      | (1)   | Peat   | -        |         |           |                |        |                                              |
|      | (2)   | Cok    | ing bi   | itumii  | nous co   | al             |        |                                              |
|      | (3)   | Nor    | n-coki:  | ng bit  | uminot    | ıs coal        |        |                                              |
|      | (4)   | Bro    | wn co    | al      |           |                |        |                                              |
| 131. | In a  | four s | stroke   | engi    | ne, we g  | get one p      | owei   | r stroke in                                  |
|      | (1)   | 270    | ° of cr  | ank r   | otation   |                | (2)    | 360° of crank rotation                       |
|      | (3)   | 540    | o of cr  | ank r   | otation   |                | (4)    | $720^{\circ}$ of crank rotation              |
| 132. | Mor   | se tes | st is ca | rried   | out to c  | <br>letermin   | e the  | I.P. of a                                    |
|      | (1)   | sing   | le cyl   | inder   | petrol e  | engine         |        |                                              |
|      | (2)   | -      |          |         | diesel e  | 47             |        |                                              |
|      | (3)   | mul    | ti cyli  | nder    | engine    |                |        |                                              |
|      | (4)   | dou    | ble ac   | ting s  | team er   | ngine          |        |                                              |
| 133. | The   | devic  | e for    | smoo    | thing ou  | it the po      | wer i  | impulses from the engine is called           |
|      | (1)   | Fly    | wheel    | l       |           |                | (2)    | Clutch                                       |
|      | (3)   | Tore   | que co   | onvert  | or        |                | (4)    | Differential                                 |
| 134. | Whi   | ich on | ie of tl | ne sta  | tements   | is correc      | ct?    |                                              |
|      | (i)   |        | •        |         |           | rocating       |        |                                              |
|      | (ii)  |        |          |         |           | speed er       |        |                                              |
|      | (iii) |        | ,        |         |           | ol as fue      |        |                                              |
|      | (iv)  | Petr   | ol eng   | gine is | s an inte | ernal con      | าเวเรเ | tion engine                                  |
|      | (1)   |        | four a   |         |           |                | (2)    | Only (i) is correct                          |
|      | (3)   | Onl    | y (iv)   | is cor  | rect      |                | (4)    | All are wrong                                |

SPD

| •    |       |                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 514 |
|------|-------|------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 135. | Тос   | levelop high voltage for spark j   | plug d   | of petrol engine,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|      | (1)   | distributor is installed           | (2)      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|      | (3)   | battery is installed               |          | ignition coil is installed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| 126  | C1    | de décise en de Conferencies       | Jan fo   | un atuaka patual againa is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| 150. |       | dard firing order for four cylin   |          | 1 - 3 - 4 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|      | , .   | 1 - 4 - 3 - 2<br>1 - 3 - 2 - 4     |          | 1 - 2 - 3 - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|      | (3)   | 1 - 3 - 2 - 4                      | (+)      | 1-2-3-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 137. | In co | ompression-ignition four stroke    | e cycle  | e engine, cam shaft runs at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|      | (1)   | half the speed of crankshaft       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|      | (2)   | same the speed of crankshaft       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|      | (3)   | twice the speed of crankshaft      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|      | (4)   | any speed irrespective of crar     | ıkshaf   | t speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 138. | The   | actual volume of fresh charge t    | aken     | into four stroke-petrol engine is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|      | (1)   | less than stroke volume            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|      | (2)   | equal to stroke volume             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|      | (3)   | equal to stroke volume + clea      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|      | (4)   | does not depend upon stroke        | volur    | ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| 139. | A tw  | vo stroke I.C. engine is identifie | ed by    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|      | (1)   | the size of the engine             | (2)      | size of the fly wheel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|      | (3)   | type of cooling system             | (4)      | absence of valves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 140. | With  | nin a carburettor, the velocity o  | f air is | s maximum at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|      | (1)   | outlet                             |          | And and Address Address to And I de and the Control of the Control |     |
|      | (2)   | inlet                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|      | (3)   | throat at venturi                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|      | (4)   | central point of total length      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 1.11 | The   | diesel engine, is identified by t  | he pre   | esence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| 111. | (1)   | air cleaner                        | (2)      | radiator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|      | (3)   | fuel injector                      | (4)      | starter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|      |       |                                    | (1)      | States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| 142. |       | heat engine, which of the follow   | wing e   | energy conservation occurs ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|      | (1)   | Work is converted into heat        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|      | (2)   | Heat energy is converted into      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|      | (3)   | Heat energy is converted into      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|      | (4)   | Electrical energy is converted     | into l   | neat energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| 143. | Wha   | at is thermal efficiency of a heat | engii    | ne ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|      | (1)   | It is the ratio of brake power t   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|      | (2)   | It is the ratio of work output t   |          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|      | (3)   | It is the ratio of heat rejected t |          | • 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|      | (4)   | It is the ratio of work output t   |          | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|      |       | T. T.                              |          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |

| SPD      |      |                                                                           |
|----------|------|---------------------------------------------------------------------------|
| 144.     | Con  | npression ratio of a petrol engine is                                     |
|          | (1)  | higher than that of diesel engine                                         |
|          | (2)  | lower than that of diesel engine                                          |
|          | (3)  | equal to that of diesel engine                                            |
|          | (4)  | none of the above                                                         |
| 145.     | In a | condensing steam engine,                                                  |
|          | (1)  | the pressure in condenser is above atmospheric pressure                   |
|          | (2)  | the pressure is below atmospheric pressure                                |
|          | (3)  | the pressure is equal to atmospheric pressure                             |
|          | (4)  | the complete vacuum exists in condenser                                   |
| 146.     | Wit  | n increase in compression ratio, the thermal efficiency of the Otto cycle |
|          | (1)  | decreases                                                                 |
|          | (2)  | does not change                                                           |
|          | (3)  | cannot be predicted unless 'γ' (adiabatic index) is known                 |
|          | (4)  | increases                                                                 |
| <br>147. | As t | he compression ratio increases, the volumetric efficiency of compressor   |
|          | (1)  | decreases                                                                 |
|          | (2)  | increases                                                                 |
|          | (3)  | remains same                                                              |
|          | (4)  | becomes unpredictable                                                     |
| 148.     | Rota | ary compressor can supply                                                 |
|          | (1)  | large volumes of air at low pressure                                      |
|          | (2)  | small volumes of air at high pressure                                     |
|          | (3)  | large volumes of air at high pressure                                     |
|          | (4)  | small volumes of air at low pressure                                      |
| <br>149. | Whi  | ch one of the following is not a safety device on compressor ?            |
|          | (1)  | Relief valve                                                              |
|          | (2)  | Over-pressure shut down                                                   |
|          | (3)  | Strainer                                                                  |
|          | (4)  | Over-speed shut down                                                      |
| 150.     | The  | axial flow compressor and centrifugal compressor represent                |
|          | (1)  | positive and non-positive type of rotary compressors respectively.        |
|          | (2)  | positive type compressors.                                                |
|          | (3)  | non-positive and positive type of rotary compressors respectively.        |
|          | (4)  | non-positive type of compressors.                                         |
|          |      |                                                                           |

| aktionales/habite-bodsslam. De bos dans er i i striften i vina av binde des | to ar alla salengit esa estat Calendria di lalam has a habitat di tabbilit i hiberato en la estato est un esta<br>Estato | and the area of the second statement and the second to | and the second second second second second | and and the analysis of the second of the second | Contraction of |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------|--------------------------------------------------|----------------|
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |
|                                                                             |                                                                                                                          |                                                        |                                            |                                                  |                |