2008 V

100280

MATHEMATICS (Optional)

गणित (वैकल्पिक)

Time: 3 hours Maximum Marks: 200

Note	e :							
(i)	In all attempt <u>Five</u> questions.							
(ii)	Question No. 1 is compulsory.							
(iii)	Of the remaining questions, Attempt Any Four by selecting one question from each section.							
(iv)	Number of optional questions upto the prescribed number in the order in which questions have been solved, will only be assessed and excess answers of the question/s will not be assessed.							
(v)	Candidate should not write roll number, any names (including his/her own), signature, address any indication of his/her identity anywhere inside the answer book otherwise he/she will be penal							
1.	Answer any four of the following:							
	(a)	Define	(i)	Feasible solution to LPP.	2			
			(ii)	Basic feasible solution to LPP.	2			
			(iii)	Convex set.	2			
		Show that the set of all feasible solution to a LPP (if a feasible solution exists) is a convex set.						
	(b)	If {a _n } is a	creasing sequence of positive numbers and if $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges,					
		then show	w that	$\sum_{n=0}^{\infty} a_n $ converges.	10			
	(c)	Determine components of velocity and acceleration of a moving particle along radial and transverse directions.						
	(d)	Write a programme in C/recent computer language to evaluate the roots of a quadratic equation ax ² +bx+c = 0 requesting the user to input the values of a, b, c and to output real roots root1 and root2.						
	(e)			ence of continuous real valued functions on the metric space X uniformly to 'f 'on X, then show that 'f ' is also continuous on X.	10			

SECTION - A

2.	(a)	Show that every group is isomorphic to a subgroup of a permutation group A(S) for some appropriate S.				
		State the name of this theorem.				
	(b)	If $\{v_1, v_2, \ldots, v_n\}$ is a basis of a vector space V and if $\{w_1, w_2, \ldots, w_m\}$ is linear independent in V, then show that $m \le n$.				
3.	(a)	Define (i) Euclidean Domain.	3			
		(ii) Principal Ideal Domain (PID).	3			
		Show that every Euclidean Domain is PID.	14			
	(b)	State Cayley Hamilton theorem and using it find inverse of the matrix A if it exists.	2			
		$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 4 \\ 3 & 4 & 8 \end{pmatrix}$	18			
		SECTION - B				
4.	(a)	If 'f' is a real-valued continuous function on a compact metric space X, then show that $f(X)$, range of 'f' is compact and 'f' attains a maximum and minimum at points of X.				
	(b)	Define absolute convergence and conditional convergence for improper integrals				
			: + 2			
		Show that $\int_{a}^{\infty} \frac{\sin x}{x} dx$ is convergent but not absolutely.	8 + 8			
5.	(a)	Define differentiability of a function of two variables at a point.	2			
		Let $f: E \to \mathbb{R}$ be defined on a neighbourhood E of $(a,b) \in \mathbb{R} \times \mathbb{R}$ such that $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$	10			
		are continuous at (a,b) . Show that 'f' is differentiable at (a,b) . Is the converse of this is true? Justify your answer.	8			

20

(b) Define a Riemann integral for a bounded real function on [a, b].
 6 Show that a bounded real function 'f' is Riemann integrable on [a,b] if and only if for every ∈>0, there is a partition P of [a,b] such that U(P, f) - L(P, f) < ∈.

SECTION - C

- 6. (a) Show that the general equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ of second degree represents a conic section.
 - (b) Define (i) Divergence of a vector point function.
 - (ii) Curl of a vector point function.
 - (c) Show that $\overline{b} \cdot \nabla (\overline{a} \cdot \nabla \frac{1}{r}) = \frac{3(\overline{a} \cdot \overline{r})(\overline{b} \cdot \overline{r})}{r^5} \frac{\overline{a} \cdot \overline{b}}{r^3}$
 - (d) Show that $\operatorname{curl}(\bar{r} \times \bar{a}) = -2\bar{a}$.
- 7. (a) (i) Find the length of perpendicular from a point (x_1, y_1, z_1) to the plane ax+by+cz=d.
 - (ii) Find equation of a sphere for which the circle $x^2+y^2+z^2+7y-2z+2=0$, 2x+3y+4z=8 is a great circle.
 - (b) Verify Gauss divergence theorem for $\overline{f} = (x^2 yz)i + (y^2 zx)j + (z^2 xy)k$ taken over the rectangular parallelopiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$.

SECTION - D

- 8. (a) (i) Explain when M(x,y)+N(x,y)y'=0 is said to be exact in some rectangle R. 2
 - (ii) Define integrating factor of the equation M(x,y)dx+N(x,y)dy = 0, where M and N have continuous partial derivatives in some rectangle R.
 2 Show that the equation M(x,y)+N(x,y)y' = 0 is exact in

R:
$$|x-x_0| \le a$$
, $|y-y_0| \le b$ if and only if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ in R. 8 + 8

(b) Find the inverse of the coefficient matrix of the system.

$$\begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \\ 4 \end{bmatrix}$$

by Gauss - Jordan method with partial pivoting and hence solve the system.

P.T.O.

20

- 9. (a) If φ₁ is a solution of y" + a₁(x)y' + a₂(x)y = 0 on an interval I, and φ₁ (x) ≠ 0 on I, describe a method to determine a second linearly independent solution φ₂ of this differential equation on I.
 12 Hence or otherwise find second linearly independent solution of y"-4xy'+(4x²-2)y=0 after verifying that φ₁ (x)=ex² is a solution of this differential equation.
 8
 - (b) Describe Trapezoidal and Simpson $\frac{1}{3}rd$ rule to find $\int_{a}^{b} f(x)dx$ numerically. 5 + 5

Find an approximate value of $\int_{0}^{1} \frac{dx}{1+x}$ by using Trapezoidal and Simpson $\frac{1}{3}rd$ rule and compare with exact solution. 5+5