अधिब्याञ्याता, रसाभमशास्त्र चास्मी परीक्षा- २०११

A

2011

Code: RNM

11 : 133

परीक्षा दिः १२)१२४२०११ प्रश्नपुस्तिका क्रमांक BOOKLET No.

प्रश्नपुस्तिका

वेळ : 1 ¹/₉ (दीड) तास

चाळणी परीक्षा रसायनशास्त्र विषयक ज्ञान एकूण प्रश्न : 150

एकूण गुण: 150

सूचना

(1) <u>सदर प्रश्नपुस्तिकेत **150 अनिवार्य प्रश्न आहेत.** उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही</u>

प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे **न विसरता नमूद करावा**.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपित्रकेवरील सूचनेप्रमाणे तुमच्या उत्तरपित्रकेवर नमूद करावा. अशा प्रकारे उत्तरपित्रकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नथे.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपित्रकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची अचूक उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्चपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुर्विणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

पर्यवेक्षकांच्या सूचनेविना हे सील उघडू नये

आधिकशास्त्राता, न्यामस्यास्त्र नावका एर्टासा दक्ष

RNM

2

कच्च्या कामासाठी जागा / SPARCE FOR ROUGHENONE

Δ

Wha	at doe	es the	relation	nΔx×	$\Delta p = \frac{n}{4\pi}$	represe	nt?					
(1)					411	(2)		senber	g's und	certain	ty pri	nciple
(3)	Sch	roding	er's wa	ve equ	ation	(4)	Pau	li's ex	clusion	princi	iple	
The	angu	ılar m	omentu	ım qua	ntum nu	mber is	denot	ed by	which	letter	?	
(1)	n		(2)	8		(3)	m			(4)	l	
				n atom	can hav	e same s	set of	four i	dentica	ıl quar	ıtum r	numbers."
(1)	Auf	bau's j	principl	e		(2)	Hui	nd's ru	ıle			
(3)	Pau	li's ex	clusion	princip	ole	(4)	Nor	e of tl	nese			
		ctive 1	nuclear	charge	e zeta is	nearly	equa	l to th	ne nucl	ear ch	arge	for which
(1)	1s o	rbital				(2)	Out	ermos	t orbita	al		
(3)	2p (rbital				(4)	Tota	al nuc	lear ch	arge of	f all o	rbitals
			ecules a	_	•	cording	to va	lence	shell e	lectron	pair	repulsion
	ry fo			_	•		to va metry		shell e	lectron	pair	repulsion
	ry fo	r the f		_	•			<u>'</u>	shell e	lectron	ı pair	repulsion
theo	ory fo Mol	r the f ecules		_	•	Geo	<i>metr</i> y Line	<u>'</u>	shell e	lectron	pair	repulsion
theo	ory fo Mol NH	r the f ecules		_	•	<u>G</u> ео.	<i>metr</i> y Line V-sl	ear	shell e	lectron	ı pair	repulsion
i.	Mol NH CIF	r the fecules		_	•	<u>Geor</u> a. b.	<i>metr</i> y Line V-sl T-sl	ear naped	shell e		ı pair	repulsion
i. ii. iii.	Mol NH, ClF	r the fecules		_	•	<u>Geo.</u> a. b. c.	metry Lind V-sl T-sl Trig	ear naped	oipyran		ı pair	repulsion
i. ii. iii. iv.	Mol NH CIF ICI H ₂ C	r the fecules		_	•	Geo. a. b. c. d.	metry Lind V-sl T-sl Trig	ear naped naped conal t	oipyran	nidal	ı pair v-d	repulsion
i. ii. iii. iv. v.	Mol NH, CIF, IC1, H ₂ C SF ₄	r the f	Tollowin	g mole	cules :	Geo. a. b. c. d. e.	Line V-sl T-sl Trig	ear naped naped onal t	oipy ra n	nidal		repulsion
i. ii. iii. iv. v. (1) (3)	Mol NH, CIF, IC1; H ₂ C SF ₄ i-d i-b	r the fecules ii-c ii-d cule a	iii-b iii-c mong (iv-e iv-a	v-a v-e	Geo. a. b. c. d. e. (2) (4)	Line V-sl T-sl Trig Pyr: i-e i-c	ear naped naped conal b amida ii-c ii-e	oipyran l iii-a iii-d	nidal iv-b iv-a	v-d v-b	repulsion
	(1) (3) The (1) "No It is (1) (3) The orbi (1)	(1) De-1 (3) Sch The angumant (1) n "No two of the state of the stat	(1) De-Broglie (3) Schroding The angular m (1) n "No two electro It is the statem (1) Aufbau's p (3) Pauli's exception The effective probital? (1) Is orbital	(1) De-Broglie equate (3) Schrodinger's wa The angular momentum (1) n (2) "No two electrons in a lit is the statement of (1) Aufbau's principal (3) Pauli's exclusion The effective nuclear orbital? (1) Is orbital	(1) De-Broglie equation (3) Schrodinger's wave equation The angular momentum quarties (1) n (2) s "No two electrons in an atom It is the statement of (1) Aufbau's principle (3) Pauli's exclusion princip The effective nuclear charge orbital? (1) Is orbital	(1) De-Broglie equation (3) Schrodinger's wave equation The angular momentum quantum num (1) n (2) s "No two electrons in an atom can have it is the statement of (1) Aufbau's principle (3) Pauli's exclusion principle The effective nuclear charge zeta is orbital? (1) Is orbital	(1) De-Broglie equation (2) (3) Schrodinger's wave equation (4) The angular momentum quantum number is (1) n (2) s (3) "No two electrons in an atom can have same so that is the statement of (1) Aufbau's principle (2) (3) Pauli's exclusion principle (4) The effective nuclear charge zeta is nearly orbital? (1) Is orbital (2)	(1) De-Broglie equation (2) Heir (3) Schrodinger's wave equation (4) Paul The angular momentum quantum number is denoted (1) n (2) s (3) m "No two electrons in an atom can have same set of It is the statement of (1) Aufbau's principle (2) Hum (3) Pauli's exclusion principle (4) Non The effective nuclear charge zeta is nearly equatorbital? (1) Is orbital (2) Out	(1) De-Broglie equation (2) Heisenber (3) Schrodinger's wave equation (4) Pauli's ex The angular momentum quantum number is denoted by (1) n (2) s (3) m "No two electrons in an atom can have same set of four is it is the statement of (1) Aufbau's principle (2) Hund's rus (3) Pauli's exclusion principle (4) None of the orbital? The effective nuclear charge zeta is nearly equal to the orbital? (1) Is orbital (2) Outermost	(1) De-Broglie equation (2) Heisenberg's unit (3) Schrodinger's wave equation (4) Pauli's exclusion. The angular momentum quantum number is denoted by which (1) n (2) s (3) m "No two electrons in an atom can have same set of four identical it is the statement of (1) Aufbau's principle (2) Hund's rule (3) Pauli's exclusion principle (4) None of these The effective nuclear charge zeta is nearly equal to the nucleorbital? (1) Is orbital (2) Outermost orbital.	(1) De-Broglie equation (2) Heisenberg's uncertain (3) Schrodinger's wave equation (4) Pauli's exclusion principle. The angular momentum quantum number is denoted by which letter (1) n (2) s (3) m (4) "No two electrons in an atom can have same set of four identical quantit is the statement of (1) Aufbau's principle (2) Hund's rule (3) Pauli's exclusion principle (4) None of these The effective nuclear charge zeta is nearly equal to the nuclear charbital? (1) Is orbital (2) Outermost orbital	(1) De-Broglie equation (2) Heisenberg's uncertainty pri (3) Schrodinger's wave equation (4) Pauli's exclusion principle The angular momentum quantum number is denoted by which letter? (1) n (2) s (3) m (4) l "No two electrons in an atom can have same set of four identical quantum r It is the statement of (1) Aufbau's principle (2) Hund's rule (3) Pauli's exclusion principle (4) None of these The effective nuclear charge zeta is nearly equal to the nuclear charge orbital? (1) Is orbital (2) Outermost orbital

7.		at is the bound is a second of the second of	ond or	der of carbon r	nonoxid	le (CO) as	per the m	olecular	orbital
	(1)	Four	(2)	Six	(3)	Three	(4)	Eight	
8.	the	cation has l	nigh po	e formation of wh sitive charge, sn re charge and lan	nall siz	e and ns^2p^6			
	(1)	Valence bo	nd		(2)	Covalent b	ond		
	(3)	Ionic bond			(4)	Co-ordinat	ion bond		
9.		•		ces of attractions maximum in c		een the mol	ecules of p	olar as v	well as
	(1)	solids	(2)	liquids	(3)	gases	(4)	colloids	
10.	s-bl	ock element	s consis	st of metals					
	(1)	highly elec	tro-pos	itive elements	(2)	low electro	-positive ele	ements	
	(3)	highly elec	tro-neg	ative elements	(4)	moderately	electro-neg	gative ele	ments
11.	Alk	ali metals h	ave mi	nimum effective	nucleai	r charge and	l hence they	have the	e
	(1)	smallest a	tomic r	adii					
	(2)	smallest a	tomic r	adii in their resi	pective	periods			
	(3)	largest ato	mic ra	dii					
	(4)	largest ato	mic ra	dii in their respe	ective p	eriods			
12.		gonal relation	onship (existing between	a pair	of s-block el	ements can	be expla	ined on
	(1)	atomic vol	ume ar	d density					
	(2)	metallic a	nd non-	metallic charact	er				
	(3)	polarising	power	and electronegat	tivity				
	(4)	atomic and	l ionic	radii					

13.	The acid	•	of the el	ements of wh	ich group	are electron	deficier	nt an	d act as Lewis
	(1)	Gr. IA	(2)	Gr. IIIA	(3)	Gr. IVB		(4)	Gr. IB
14.		ctron diffra anitride (S			measurem	ents have	shown	that	t tetrasulphur
	(1)	a tetrahed	dral str	ıcture					
	(2)	an eight-r	nember	ed cradle ring	g structure				
	(3)	an eight-r	nember	ed puckered 1	ring struct	ure			
	(4)	a six-men	nbered r	ing structure					
15.	Whi	ich halogen	canno	t form any in	terhalogen	compound ?	•		
	(1)	Iodine	(2)	Chlorine	(3)	Bromine		(4)	Fluorine
16.	Perc	ovskite is tl	he mine	ral having st	ructure				
	(1)	CaTiO ₃	(2)	FeTiO ₃	(3)	${ m MgTiO}_3$		(4)	MgAl ₂ O ₄
17.	All (of the follow	wing sta	tements abou	ıt the tran	sition eleme	nts are	true	except that,
	(1)	all of the	transiti	on elements a	are metalli	c			
	(2)	in aqueou	s soluti	on many of tl	neir simple	e ions are col	oured		
	(3)	most of th	nese ele	ments show o	nly one va	lence state			
	(4)	most of th	nese ele	ments show p	ronounced	catalytic ac	tivity		
18.	The	purple col	our of [7	$\text{Pi}(\text{H}_2\text{O})_6]^{3+}$ io	n is due t	0			
	(1)	unpaired	d-electr	on	(2)	transfer of	an el e ct	ron	
	(3)	presence (of water	molecule	(4)	reflection of	f light		
10		•	-	l ₃ .5NH ₃ , Co six, each amir	•	$_3$ and CoCl_3	. 3NH ₃	since	e the secondary
19.	vale								
15.	(1)	trigonal p	lanar g	eometry	(2)	tetrahedral	geomet	try	

SPACE FOR ROUGH WORK

20.	The	proper name	of th	e compound [Co	$(NH_3)_5$	Co ₃]Cl is					
	(1)	Pentaammi	ne cai	bonato cobalt (I	II) chlo	ride					
	(2)	-									
	(3) Chloro pentaammine cobalt (III) carbonate										
	(4)	Pentaammi	ne cai	bonato cobalt (I	I) chlor	ide 					
21.				an octahedral sy igurations amou							
	(1)	2 Δ ₀ – 2P	(2)	2 Δ ₀ – 4P	(3)	2·6 Δ ₀ – 2P	(4)	2·8 ∆ ₀ − P			
22.	Silie	ca readily dis	solves	in							
	(1)	HF	(2)	HCl	(3)	HI	(4)	HNO ₃			
23.	CFS	SE for a high	spin (octahedral syste	m is zeı	ro. Its electronic	distrib	ution is			
	(1)	$(t_{2g})^4 (e_g)^0$	(2)	$(t_{2g})^6 (e_g)^3$	(3)	$(t_{2g})^4 (e_g)^2$	(4)	$(t_{2g})^3 (e_g)^2$			
24.	The	CFSE for d ⁴	confi	guration for high	h spin c	omplexes is	,				
	(1)	- 0·4 ∆ ₀	(2)	- 0·6 Δ ₀	(3)	- 0·8 Δ ₀	(4)	- 1·2 Δ ₀			
25.	The	most commo	n oxio	lation state of la	nthanio	les is					
	(1)	+4	(2)	+3	(3)	+5	(4)	+7			
26.	On	alkylation of	dibora	ane, the product	formed	is					
	(1)	hexaalkyl d	iborai	ne	(2)	tetraalkyl dibo	rane				
	(3)	dialkyl dibo	rane		(4)	None of these					
27.	Am	ong the follov	ving la	anthanides, the	smalles	t size is that of					
	(1)	Cerium	(2)	Dysprosium	(3)	Thulium	(4)	Ytterbium			
28.	The	first actinide	meta	al which resemb	les a laı	nthanide is					
	(1)	Neptunium	(2)	Americium	(3)	Berkelium	(4)	Uranium			

29.	The	principal	oxidation	n state of thor	ium is			
	(1)	+4	(2)	+3	(3)	+2	(4)	+5
30.	Fe(C	CO) ₅ has a	a geometr	y which is				•
	(1)	octahedr	al		(2)	trigonal b	ipyramidal	
	(3)	square p	yramidal		(4)	None of the	nese	
31.			_	bons can be	_		nes by the	complex formed
	(1)	Pt	(2)	Ag	(3)	Au	(4)	Zn
32.	Whi	ich of the	halide io	ns causes larg	er d orbit	al splittings	s ?	
	(1)	\mathbf{Cl}^-	(2)	I-	(3)	Br ⁻	(4)	F-
33.		infra-red ips in the			f Fe ₂ (CO)	₉ indicates		ypes of carbonyl
	(1)	1	(2)	2	(3)	3	(4)	Not clear
34.	The		ture abov		W # AA			Not clear s paramagnetic
34.	The	temperat aviour is c	ture abov	ve which an	W # AA		mplex show	
34.	The beha	temperat aviour is c Curie te	ture abov	ve which an	antiferror	nagnetic co	mplex show	
	The beha	temperat aviour is c Curie ter Critical	ture abov called mperatur temperat	e which an	(2) (4)	nagnetic co Neel temp Theta tem	mplex show erature sperature	
34. 35.	The beha (1) (3)	temperat aviour is c Curie ter Critical	ture above called mperature temperature molec	e which an	(2) (4)	nagnetic co Neel temp Theta tem	mplex show erature sperature kene is susc	rs paramagnetic
	The beha (1) (3) Wheeler by	temperate aviour is continued to the Curie ten Critical formation and alkeen an alkeen	ture above called mperature temperature molecular molecular miles	e which an	antiferror (2) (4) with a m	nagnetic con Neel temp Theta tem	erature sperature kene is susce	rs paramagnetic
	The beha (1) (3) Whe by (1) (3)	temperate aviour is concerned to the Critical tensor an alkeen an alkeen Electropic Both (1)	ture above called mperature temperature molecular molecu	e which an	(2) (4) with a m (2) (4)	Neel temp Theta tem etal, the all Nucleophi None of the	erature sperature kene is susce	rs paramagnetic
35.	The beha (1) (3) Whe by (1) (3)	temperate aviour is complex [ture above called mperature temperature molecular molecu	e which an e ure ule complexes	(2) (4) with a m (2) (4)	Neel temp Theta tem etal, the all Nucleophi None of the	erature sperature kene is susce	eptible to attack

37.	According to	Curie's	law,	the	paramagnetic	susceptibility	$\chi_{\mathbf{M}}^{\mathbf{corr}}$	is	related	to	the
	absolute temp	oerature	as								

 $\chi_{M}^{corr} \propto T$ (1)

- $(2) \quad \chi_{\mathbf{M}}^{\mathbf{corr}} \propto \frac{1}{\mathbf{T}}$
- (3)does not depend on temperature
- (4) None of the above

The catalyst formed by the combination of ${\rm TiCl_4}$ and ${\rm Al}({\rm C_2H_5})_3$ is called the 38.

- (1)Wilkinson's catalyst
- Ziegler Natta catalyst (2)

(3)Lazier catalyst **(4)** Nishimura catalyst

39. A polynuclear metal carbonyl which does not contain a bridging carbonyl group is

Fe₂(CO)₀

 $\operatorname{Co_4(CO)}_{12}$

Co2(CO)8 (3)

(4) All of the above

The splitting energy Δ_0 increases in the order 40.

- $\operatorname{CrCl}_{6}^{3-} < \operatorname{Cr}(\operatorname{CN})_{6}^{3-} < \operatorname{Cr}(\operatorname{NH}_{3})_{6}^{3+} \quad (2) \quad \operatorname{CrCl}_{6}^{3-} < \operatorname{Cr}(\operatorname{NH}_{3})_{6}^{3+} < \operatorname{Cr}(\operatorname{CN})_{6}^{3-} < \operatorname{Cr}(\operatorname{NH}_{3})_{6}^{3+} < \operatorname{Cr}(\operatorname{NH}_{3})_{6}^{3+} < \operatorname{Cr}(\operatorname{CN})_{6}^{3-} < \operatorname{Cr}(\operatorname{CN})_{6}^{3-} < \operatorname{Cr}(\operatorname{NH}_{3})_{6}^{3-} < \operatorname{Cr}(\operatorname{CN})_{6}^{3-} < \operatorname{Cr}(\operatorname{CN})_{6}$
- $\operatorname{Cr}(\operatorname{NH}_3)_6^{3+} < \operatorname{Cr}(\operatorname{CN})_6^{3-} < \operatorname{Cr}\operatorname{Cl}_6^{3-} \quad (4) \quad \operatorname{Cr}(\operatorname{NH}_3)_6^{3+} < \operatorname{Cr}\operatorname{Cl}_6^{3-} < \operatorname{Cr}(\operatorname{CN})_6^{3-}$

41. The condition that arises due to excessive intake of iron to toxic level is

(1)Hemochromatosis (2)**Transferrins**

Ovotransferrins (3)

Lactoferrin (4)

The rate of hydrolysis of ATP by an active ion pump is directly related to 42.

- (1) concentration of Na+ ions
- concentration of K+ ions
- concentration of Mg+2 ions
- concentration of Na+ and K+ ions in presence of Mg+2

43. The acid or base property of a substance is not inherent in the substance itself, is the limitation of

Arrhenius concept

(2)Bronsted – Lowry concept

Protonic concept

(4) Auto-ionisation concept

SPACE FOR ROUGH WORK

- 44. According to Bronsted concept, the basicity of the anions derived from CH₄, NH₃, H₂O and HF is in the order of
 - (1) $F^- > OH^- > NH_2^- > CH_3^-$
- (2) $CH_3^- > NH_2^- > F^- > OH^-$
- (3) $F^- > OH^- > CH_3^- > NH_2^-$
- (4) $CH_3^- > NH_2^- > OH^- > F^-$
- 45. Which of the following are Lewis acids and Lewis bases?

H⁺, SO₃, phenol, H₂O, ROH

- (1) Acids: $-H^+$, SO₃, phenol Bases: $-H_2$ O, ROH
- (2) Acids: H⁺, SO₃, H₂O Bases: - Phenol, ROH
- (3) Acids: H⁺, ROH
 Bases: Phenol, H₂O, SO₃
- (4) All are acids
- 46. When acetic acid (CH₃COOH) is dissolved in liq. NH₃ (ammonia)
 - (1) it behaves as strong base
 - (2) it behaves as strong acid
 - (3) neutralisation reaction take place
 - (4) liq. NH₃ (ammonia) behaves as an acid
- 47. When KNH₂ is mixed with liquor ammonia (NH₃) solution of silver nitrate (AgNO₃), the silver (Ag) precipitates as
 - (1) nitrate salt (2)
 - 2) imide salt
- (3) solid metal
- (4) amide salt
- 48. The inorganic salts containing highly charged ions like oxides, hydroxides, sulphides are practically
 - (1) soluble in liq. SO₂

- (2) soluble in liq. NH₃
- (3) insoluble in liq. NH_3 and liq. SO_2 (4)
- (4) soluble in both liq. SO₂ and liq. NH₃
- 49. Non-ionising solvents have
 - (1) high dielectric constant and high dipole moment
 - (2) low dipole moment and high dielectric constant
 - (3) low dipole moment and low dielectric constant
 - (4) high polarity

10

(1) Charles' law

(2) Einstein's law

(3) Boyle's law

(4) Pressure-Temperature law

51. The unit of 'a', the van der Waal's constant is

(1) atm lit mol^{-1}

(2) $atm lit^{-1} mol^{-1}$

(3) $atm lit^2 mol^{-2}$

(4) $atm lit^{-1} mol^{-2}$

52. The inter-relationship between the average velocity ($\bar{\nu}$) and RMS velocity (μ) can be given as

 $(1) \quad \overline{v} = \mu \times 0.9213$

(2) $\bar{v} = \mu \times 9.213$

(3) $\mu = \bar{v} \times 0.923$

(4) $\mu = \bar{\nu} \times 9.213$

53. The gases which have their critical temperature above or just below the ordinary atmospheric temperature are liquified by

(1) Linde's method

(2) Faraday's method

(3) Claude's method

(4) Maxwell's method

54. Inter-molecular forces in liquids are essentially

- (1) neutral
- (2) electrical
- (3) strong
- (4) magnetic

55. The liquid crystals in which molecules are arranged in parallel to each other but they are free to slide or roll individually, are known as

- (1) smectic liquid crystals
- (2) cholesteric liquid crystals
- (3) nematic liquid crystals
- (4) crystalline liquid crystals

56. In simple cubic lattice of NaCl, each particle is surrounded by

- (1) eight other particles
- (2) four other particles

(3) six other particles

(4) ten other particles

57.	The movement of sol particles under	an appl	ied electric field is called
	(1) Electrofiltration	(2)	Electro-osmosis
	(3) Electrokinetic phenomenon	(4)	Electrophoresis
58.	An emulsion is a colloidal solution of	fa	
	(1) solid dispersed in liquid	(2)	liquid dispersed in another liquid
	(3) liquid dispersed in solid	(4)	None of the above
59.	The function of alum used for purifica	ation of	water is to
	(1) coagulate the colloidal particles	(2)	coagulate the sol particles
	(3) emulsify the sol particles	(4)	emulsify the colloidal particles
60.	The solution which does not show Ty	ndall eff	ect is
	(1) suspension	(2)	colloidal solution
	(3) true solution	(4)	emulsion
61.	The unit of specific reaction rate cons	tant for	zero order reaction is
	$(1) \sec^{-1}$	(2)	$\mathrm{mol}~\mathrm{dm}^{-3}$
	(3) $\text{mol dm}^{-3} \text{ sec}^{-1}$	(4)	$\mathrm{mol}\;\mathrm{dm}^{3}\;\mathrm{sec}^{-1}$
62.			raight line graph with slope = - 0.00486.
	The value of K (specific rate constant)) 18	
	(1) $-0.00486 \text{ min}^{-1}$	(2)	$-0.001119 \text{ min}^{-1}$
	(3) 0·001119 min ⁻¹	(4)	0·01119 min ⁻¹
63.	The half-time of a first-order reaction of a reactant, after 360 days, the amo		ays. Starting with a unit concentration eactant remaining is
	(1) $\frac{1}{16}$ (2) $\frac{1}{9}$	(3)	$\frac{1}{4}$ (4) $\frac{1}{2}$
	16 8		4 2

- 64. In which of the following processes does the entropy decrease?
 - (1) Dissolution of NaCl in water
 - (2) Evaporation of water
 - (3) Conversion of CO2 (g) into dry ice
 - (4) Spilling of food-grains on the ground
- 65. The Gibbs Helmholtz equation is

(1)
$$\Delta G = \Delta H + T \left[\frac{d(\Delta G)}{dT} \right]_{P}$$

(2)
$$\left[\frac{d(\Delta G)}{dT}\right]_{\mathbf{p}} = \frac{-\Delta H^0}{T^2}$$

(3)
$$\left[\frac{d(\Delta G/T)}{d(\frac{1}{T})}\right]_{P} = \Delta H^{0}$$

(4)
$$\left[\frac{d(\Delta H / T)}{dT}\right]_{P} = \Delta G$$

- 66. The gas which does not show Joule Thomson effect is
 - (1) CO₂
- (2) H₂
- (3) N₂
- (4) NH₃
- 67. The number of degrees of freedom for the following equilibrium reaction are $CaCO_3$ (s) \rightleftharpoons CaO (s) + CO_2 (g)
 - (1) zero
- (2) one
- (3) two
- (4) three
- 68. In the phase diagram for water system, the number of curves representing monovariant system are
 - (1) one
- (2) two
- (3) three
- (4) four
- **69.** In the phase diagram of the ${\rm CO}_2$ system, the fusion curve slopes away slightly from pressure axis. This is due to the fact that
 - (1) the molar volume of liquid CO_2 is larger than molar volume of solid CO_2
 - (2) the molar volume of liquid CO_2 is less than molar volume of solid CO_2
 - (3) the pressure is high
 - (4) this is due to the effect of sublimation curve

70. The relation between K_p and K_c for the reaction

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$
 is

 $(1) \quad \mathbf{K}_{\mathbf{p}} = \mathbf{K}_{\mathbf{c}}$

(2) $K_p = K_c (RT)^2$

(3) $K_p = K_c (RT)^{-2}$

 $(4) \quad \mathbf{K}_{\mathbf{p}} = \frac{1}{\mathbf{K}_{\mathbf{c}}}$

71. At constant pressure, upon addition of He (g) at the equilibrium point in the reaction $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$

the degree of dissociation of

(1) PCl₅ will decrease

(2) PCl₅ will increase

(3) PCl₃ will increase

(4) Cl₂ will increase

72. Which of the following expressions is valid for a reversible process in a state of equilibrium?

(1) $\Delta G = -RT \ln K_{D}$

(2) $\Delta G = RT \ln K_D$

(3) $\Delta G^0 = -RT \ln K_{\mathbf{p}}$

(4) $\Delta G^0 = RT \ln K_p$

73. The disturbance in the equilibrium of NO and NO2 results into

(1) acid rain

(2) formation of smoke

(3) green house effect

(4) photochemical smog

74. The type of cancer that is not caused due to expoure to ultraviolet radiations is

- (1) Carcinoma
- (2) Squamous
- (3) Leukemia
- (4) Melanoma

75. The gas that does not cause green house effect is

- (1) CO₂
- (2) CFC
- (3) $N_{2}O$
- (4) NO₂

76. The relative stabilities of the carbocations a, b, c and d are in the order:

- a. $H_3C C \longrightarrow CH_2$
- b. \bigcirc $\stackrel{\oplus}{\text{CH}_2}$
- c. $H_3C \longrightarrow \overset{\oplus}{C}H_2$
- $d. \quad H_3C \overset{\oplus}{C}H_2$

(1) d < b < c < a

(2) b < d < c < a

(3) d < b < a < c

(4) b < d < a < c

- 77. The hybridisation of N atom in NH_3 is sp^3 . The bond angle H-N-H is
 - (1) 109·5°
- (2) 107·3°
- (3) 120°
- (4) 180°
- **78.** The boiling point of which of the following compounds is unusually higher as compared to the other three?
 - (1) Ethanol

(2) Propane

(3) Dimethyl ether

- (4) Ethyl Fluoride
- 79. The reaction of cis-2-butene with K-tert butoxide will yield the following cycloadduct.

- **80.** Which of the statements given below about the reactive intermediate methylene are correct?
 - a. Methylene is formed by photolysis of diazomethane.
 - b. Methylene can exist in two forms, singlet and triplet.
 - c. Singlet methylene is more stable than triplet methylene.
 - d. When methylene is generated in presence of alkene, cyclopropanes are formed.
 - (1) a, b and d
- (2) a, b and c
- (3) c and d
- (4) a, c and d
- 81. The compounds (H) Br and (H) H are a pair of (H) (H)
 - (1) enantiomers

- (2) diastereomers
- (3) conformational isomers
- (4) constitutional isomers

82. Which of the following isomers may be labelled as an E isomer?

$$(1) \quad \begin{array}{c} H \\ C = C \\ D \end{array} \quad \begin{array}{c} CH(CH_3)_2 \\ CH = CH_2 \end{array}$$

(2)
$$ClH_{2}C / CH(CH_{3})_{2}$$

$$C = C / CH_{2}CH_{3}$$

(3)
$$C = C$$

$$OHC \longrightarrow CH_2CH_3$$

$$C = C$$

$$CH = CH_2$$

$$(4) \qquad \begin{array}{c} H_2N \\ C = C \\ O_2N \end{array} \qquad \begin{array}{c} CH_2OCH_3 \\ CH_2OC_2H_5 \end{array}$$

83. The product of the following reaction is

- (1) 1-bromo-3-chlorobutane
- (2) threo-2-bromo-3-chlorobutane
- (3) erythro-2-bromo-3-chlorobutane
- (4) A mixture of threo-2-bromo-3-chlorobutane + erythro-2-bromo-3-chlorobutane

84. The absolute configuration of the asymmetric centres in the given molecule is

The second secon

$$\begin{array}{c|c} CH_3 \\ Br & 2 \\ H & 3 \\ CH_3 \end{array}$$

- (1) 2R, 3R
- (2) 2R, 3S
- (3) 2S, 3R
- (4) 2S, 3S

85. The conformation of cyclohexane in Newman style projection is that of

(1) Boat form

(2) Chair form

(3) Twist Boat form

(4) Half Chair form

86. Match the following:

Organic compounds

 λ_{max} (nm) values of absorption (uv-vis)

c-ii

a. Benzene

i. 270

b. Nitrobenzene

ii. 261

c. p-dinitrobenzene

iii. 254

(1) a-i b-ii c-iii

(2) a-ii b-iii c-i

(3) a-iii b-ii c-i

- (4) a-iii b-i
- 87. The IR spectrum of an organic compound shows absorption bands at 3050 cm⁻¹, 2740 cm⁻¹, 1700 cm⁻¹, 1600 cm⁻¹ and 1460 cm⁻¹. The compound would most likely be
 - (1) Phenol

(2) Benzaldehyde

(3) Benzophenone

- (4) Acetophenone
- 88. A compound with molecular formula $C_9H_{10}O$ gives a strong absorption band at $1680~{\rm cm}^{-1}$ and signals in the NMR spectrum as follows:

a triplet at 1.2 δ (3H); a quartet at 3.0 δ (2H) and a multiplet at 7.4 – 8.0 δ (5H). The given compound is

- (1) C₆H₅CH₂CH₂CHO
- $\begin{array}{ccc} & & & & O \\ & & || \\ (2) & & C_6H_5-CH_2-C-CH_3 \end{array}$
- (3) $C_6H_5 C CH_2 CH_3$
- $(4) \quad \begin{array}{c} & || \\ C \\ C \\ \end{array}$

- 89. On what basis will you distinguish between cis and trans alkenes using ¹H-NMR spectroscopy?
 - (1) Coupling constants

(2) Splitting pattern

(3) Chemical shifts

- (4) All of the above
- 90. From the pure rotation spectrum of HF molecule, information can be obtained about
 - (1) force constant

(2) the internuclear distance

(3) hydrogen bonding

- (4) bond strength
- 91. 2-pheny-1-propanol can be obtained from 2-phenyl propene by
 - (1) reaction with ozone followed by hydrolysis
 - (2) hydroboration followed by oxidation with H_2O_2
 - (3) oxymercuration followed by reduction
 - (4) reaction with KMnO₄ under alkaline conditions
- **92.** Which of the following alkyl halides will give methylene cyclohexane in good yield by an E₂-elimination?

- 93. The products obtained on treatment of 2-methyl-2-butene with ozone followed by aqueous $\rm H_2O_2$ would be
 - (1) Acetone + Acetone

- (2) Acetone + Acetaldehyde
- (3) Acetone + Acetic acid
- (4) Acetone + Formaldehyde

is obtained in the $\mbox{Diels}-\mbox{Alder}$ reaction of

(1)
$$\begin{array}{c} CH_3 \\ + \\ H \end{array}$$
 $\begin{array}{c} COOCH_3 \\ COOCH_3 \end{array}$

$$(2) \qquad \begin{pmatrix} \text{CH}_3 \\ + \\ + \end{pmatrix} \qquad \begin{pmatrix} \text{H} \\ \text{COOCH}_3 \end{pmatrix}$$

(3)
$$\begin{array}{c|c} CH_3 & COOCH_3 \\ + & ||| \\ COOCH_3 \end{array}$$

$$(4) \qquad \begin{array}{c} \text{CH}_3 \\ + \\ \text{H}_3\text{COOC} \end{array} \qquad \begin{array}{c} \text{H} \\ \text{COOCH}_3 \end{array}$$

- 95. The product obtained when cyclohexene is brominated using N-bromosuccinimide is/are
 - (1) cis-1,2-dibromo cyclohexane
 - (2) trans-1,2-dibromo cyclohexane
 - (3) cis-1,2-dibromo cyclohexane + trans-1,2-dibromo cyclohexane
 - (4) 3-bromo cyclohexene
- 96. According to Huckel's rule, the ring is said to be aromatic if it contains
 - (1) 4, 8, 12 etc. electrons
- (2) 2, 6, 10, 14 etc. electrons
- (3) 1, 3, 5, 7 etc. electrons
- (4) 5, 8, 12 etc. electrons
- 97. In electrophilic substitution, reaction of aromatic rings, if an electrophile is a positive ion, it gives
 - (1) carbocation

(2) carboanion

(3) π -complexes

- (4) None of the above
- 98. When aromatic rings are reduced by Na in liq. NH₃ in presence of alcohol, 1,4 addition of hydrogen takes place and non-conjugated cyclohexadienes are produced. This reaction is called
 - (1) Michael reaction

(2) Knoevenagel reaction

(3) Birch reduction

(4) Friedel - Crafts reaction

99.	When glycols are treated with acids, the	y can	be rearranged to give
	(1) acetic acid	(2)	alcohols
	(3) aldehydes or ketones	(4)	tetra-substituted glycols
100.	To obtain a good yield of aldehyde or k its oxidative cleavage is carried out with		under mild conditions from 1,2 glycol,
	$ (1) \mathbf{K_2Cr_2O_7} \qquad (2) \mathbf{KMnO_4} $	(3)	ZnO (4) HIO ₄
101.	The reaction in which phenolic est Friedel - Crafts catalyst to o- and p- ac		
	(1) Claisen rearrangement	(2)	Fries rearrangement
	(3) Cleavage	(4) .	Gabriel rearrangement
102.	In the self redox reaction of a compoun molecule of an aldehyde is oxidised to ca is known as		
	(1) Cannizzaro's reaction	(2)	Baeyer - Villiger reaction
	(3) Wittig and Mannich reaction	(4)	Houben - Hoesch reaction
103.	The reduction of aldehydes to primary a be carried out in presence of reducing a		•
	(1) alkaline KMnO ₄	(2)	PCl ₄
	(3) LiAlH ₄	(4)	trimethyl aluminium
104.	$ \begin{array}{c c} R - C - R' & \xrightarrow{Zn - Hg} & R - CH_2 - R' \\ O & & & & & & \\ \end{array} $		
	The above reaction is known as		
	(1) Wolff – Kishner reduction reaction	(2)	Skraup synthesis
	(3) Gatterman synthesis	(4)	Clemmensen reduction reaction
105.	α, β-unsaturated aldehydes can be oxidized double bond by using oxidizing agent su		·
	(1) MgO	(2)	ZnO
	(3) sodium chlorite	(4)	alkaline KMnO ₄
100			<u> </u>
100.	The atom which gets halogenated in th with PCl_3 is	e pro	cess of halogenation of carboxylic acid
100.		e pro (2)	cess of halogenation of carboxylic acid ortho-hydrogen

TUI.	Whi	ch of the following carboxylic acids	s can be	e esterified most readily?
	(1)	СН ₃ СООН	(2)	$(CH_3)_2$ CHCOOH
	(3)	$(CH_3)_3CCOOH$	(4)	$\frac{\text{CH}_3}{\text{CH}_3}$ CHCH $_2$ COOH
108.		en a mixture of absolute alcohol a		ial acetic acid is heated in presence of
	(1)	acetoacetic ester	(2)	ethyl acetate
	(3)	ethyl acetoacetate	(4)	methyl acetoacetate
109.	Deca	arboxylation of carboxylate ion of c	arboxyl	lic acid follows the mechanism
	(1)	$\mathbf{S}_{\mathbf{E_{\hat{1}}}}$ (2) $\mathbf{S}_{\mathbf{E_{\hat{2}}}}$	(3)	S_{N_1} (4) S_{E_1} or S_{E_2}
110.		Sabriel synthesis, for the conversions treated with	n of hal	lide (RX) to primary amines, the halide
	(1)	guanidine	(2)	(PhS) ₂ NLi
	(3)	potassium phthalimide	(4)	alkyl bromides
111.	Whe	en primary aromatic amines are tr	eated w	rith nitrous acid, it forms
	(1)	Diazonium salt	(2)	Heterocyclic amines
	(3)	Nitro amines	(4)	Amide
112.	Pha	se transfer catalysts are salts in w	hich on	e of the ions (usually the cation) has
	(1)	polar substituent groups	(9)	
	(1)	potar substituent groups	(2)	methyl group
	(3)	non-polar substituent groups	(4)	, , ,
113.	(3) Whe	non-polar substituent groups	(4)	, , ,
	(3) Whe	non-polar substituent groups	(4)	sulphonated benzene ring
	Whe with (1)	non-polar substituent groups on aryhydrazones are treated with the elimination of H_2O (2) CH_4	(4) a catal (3) by a me	sulphonated benzene ring lyst such as ZnCl ₂ , an indole is formed
	Whe with (1)	non-polar substituent groups en aryhydrazones are treated with the elimination of H_2O (2) CH_4 nolines are commonly synthesized by	(4) a catal (3) by a me	sulphonated benzene ring lyst such as $ZnCl_2$, an indole is formed CH_3OH (4) NH_3

115. The reaction in which amide can be cyclized with phosphorus oxychloride is known as

- Baeyer Villiger reaction
- **(2)** Bischler – Napieralski synthesis

Mannich reaction (3)

(4) None of the above

116. Ethyl acetate undergoes a condensation reaction when treated with sodium ethoxide to give

(1)
$$CH_3 - C - CH_2 - C - OC_2H_5$$

$$(3) \quad CH_3 - C - CH_2 - C - CH_3$$

117. Product (A) obtained in the following reaction is

$$(2) \qquad \begin{array}{c} \text{O} \\ \text{CH}_2\text{CH}_2\text{CHO} \end{array}$$

$$\begin{array}{ccc}
O & O \\
\parallel & \parallel \\
CH_2 - C - CH_3
\end{array}$$

$$O \\ CH = CH - CHO$$

118. Complete the following reaction:

$$\overbrace{S_{\bigoplus}^{S_{\oplus}}_{Li}}^{(i)} \xrightarrow[(ii)]{CH_3CH_2CH_2Br} ?$$

CH₃CH₂CH₂CHO **(1)**

- (2) $CH_3CH_2CH_2CH_2OH$
- CH₃CH₂CH₂COOH
- (4) CH₃CH₂CH₂CN

119.	When glucose is first treated with excess $\mathrm{CH_{3}I}$ and then subjected to acid hyd	rolysis
	the sole - OH group present on the hydrolysed product is present on which C	atom ?

- (1) C-2
- (2) C-3
- (3) C-4
- (4) C-5

120. Starch is a polymer of

(1) α-D glucose

- (2) β-D glucose
- (3) α-D glucose + β-D glucose
- (4) α-D fructose

121. Match the following:

Disaccharides

- a. Maltose
- b. Sucrose
- c. Lactose
- (1) a-ii b
- (3) a-ii
- b-iii

b-i

c-i

c-iii

Constituent Monosaccharides

- i. glucopyranose + galactopyranose
- ii. glucopyranose + glucopyranose
- iii. glucopyranose + fructopyranose
- (2) a-i b-ii c-iii
- (4) a-iii b-i c-ii

122. The conversion of α and β glucopyranose into an equilibrium mixture of both is termed as

(1) inversion

(2) racemisation

(3) mutarotation

(4) anomerisation

123. The tertiary structure of protein describes

- (1) the sequence of amino acids in the chain
- (2) location of all disulphide bridges
- (3) regular conformations assumed by segments of protein backbone
- (4) the three-dimensional structure of entire polypeptide

124. When two amino acids are heated to form dipeptide, four dipeptides are obtained. To avoid this, in classical peptide synthesis, amino group of one amino acid is protected using A, while the acid group of the same amino acid is activated using reagent B. The reagents A and B are

- (1) A = tBOC, B = DCC
- (2) $A DCC, B SOCl_2$
- (3) A DCC, B tBOC
- (4) $A = tBOC, B = SOCl_2$

125.				_			•	is labelled with atic substitution		
	reaction and subjected to hydrolysis. The products obtained are									
		Dinitropher	yl Va	l + Phe + Gly	+ Ala					
	The	C-terminal	and N	terminal ami	no acids a	are				
	(1)	Ala; Val	(2)	Val; Ala	(3)	Phe; Val	(4)	Gly; Ala		
126.		cleic acids are phosphodieste	_	•	rands of	nucleotide	subunits linl	ked to each other		
	(1)	3'-OH group	p of or	e nucleotide t	to 4'-OH	group of ar	nother nucle	otide		
	(2)			ne nucleotide t						
	(3)			e nucleotide t						
	(4)	2'-OH group	p of or	e nucleotide t	ю 5'-ОН į	group of ar	nother nucle	otide		
127.		ich of the fo gler-Natta cat		-	properties	may not	be achieved	d by the use of		
	(1)	Resistance	to crac	king						
	(2)	Control over	r confi	guration of do	uble bone	ds in the p	olymer			
	(3)	Cross-linkin	g of p	olymers						
	(4)	Conducting	polym	er						
128.	The			hich bear elec	tron with	drawing gr	roups are mo	est susceptible to		
	(1)	Cationic			(2)	Anionic				
	(3)	Free radical	l		(4)	Condensa	tion			
129.				cromolecules	-	O		of a diol with		
	(1)	Polyamides			(2)	Polyureth				
		Polyanilides				Polvisocva				

130.	Mat	ch the following:		
		Synthetic Dye		Preparation from
	a.	Malachite Green	i.	Phthalic anhydride + resorcinol (Friedel – Crafts)
	b.	Crystal Violet	ii.	Benzaldehyde + dimethyl aniline (condensation)
	c.	Fluorescein	iii.	Formaldehyde + dimethyl aniline (condensation)
	(1)	a-ii b-i c-iii	(2)	a-i b-iii c-ii
	(3)	a-iii b-ii c-i	(4)	a-ii b-iii c-i
131.		principal synthesis of nraquinone-2-sulphonic acid with soc	lium r	involves oxidation of nitrate in concentrated NaOH solution.
	(1)	Indigo	(2)	Alizarin
	(3)	Methyl orange	(4)	Phenolphthalein
132.		sider the following statements about he basis of Valence Bond theory. Wh	_	anation of colour of organic compounds these is not true?
	(1)	Resonance among charged structure states.	es redu	aces energies of both ground and excited
	(2)	Charged structures contribute less	to exc	ited state than to the ground state.
	(3)	The larger the number of electron energy difference between ground s		olved in resonance, the smaller is the and excited state.
	(4)			nolecule and greater the contribution of gth of the photon required to excite the
133.	In g	eneral, all reactions	are at	om economical.
	(1)	Substitution	(2)	Elimination
	(3)	Addition	(4)	Hydrolysis

134. Which of the following cannot be termed as a green solvent?

(1) Supercritical CO₂

- (2) Water
- (3) Carbon tetrachloride
- (4) Ionic solvent

135. Which of the following is a green reagent to carry out selective methylation of active methylene compound?

(1) Dimethyl sulphate

(2) Dimethyl carbonate

(3) Diazomethane

(4) Methyl chloride

136. 'An electrolyte in solution need not necessarily be completely dissociated into ions; instead it may be only partially dissociated to yield ions in equilibrium with unionized molecules of the substance', is put forth by

- (1) Kohlrausch's theory
- (2) Debye Huckel theory

(3) Arrhenius theory

(4) Nernst theory

137. The conductance behaviour of strong electrolytes has been given by the Debye-Huckel-Onsager equation and it is given as

- (1) $\lambda_0 = \lambda_c (A + B \lambda_0) \sqrt{c}$
- (2) $\lambda_c = \lambda_o (A + B \lambda_o) \sqrt{c}$
- (3) $\lambda_c = \frac{\lambda_o (A + B)\lambda_o}{\sqrt{c}}$
- (4) $\lambda_c = \lambda_o (A + B) \lambda_o \sqrt{c}$

138. Ostwald's dilution law can be used to determine

- (1) conductance of weak acid
- (2) dissociation constant of strong acid
- (3) molar conductivity at infinite dilution for a weak acid
- (4) molar conductivity at infinite dilution for a weak base

139. The unique ions which show high velocity under a potential drop of one volt per centimeter are

(1) H⁺ and OH⁻

(2) K^+ and Cl^-

(3) K^+ and NO_3^-

(4) NH_4^+ and NO_3^-

140. The electrode which is constructed by dipping metal electrode into its own ion solution is known as

- (1) metal-insolule salt electrode
- (2) redox-electrode
- (3) metal-metal ion electrode
- (4) None of the above

141. When solar cell is exposed to sunlight, the energy from sunlight excites electrons

- (1) from n-type silicon to the holes of the p-type silicon
- (2) from p-type silicon to the holes of the n-type silicon
- (3) and the electrons transfer to p-type silicon through external circuits
- (4) and the electrons transfer from n-type silicon to external circuit

142. At 25°C, the pH of the solution can be calculated by measuring $E_{\rm cell}$ of the cell so constructed by using saturated calomel electrode and quinhydrone electrode. The equation employed for the purpose is

(1)
$$pH = \frac{0.4581 - E_{cell}}{0.052}$$

(2)
$$pH = \frac{E_{cell} - 0.04581}{0.0591}$$

(3)
$$pH = \frac{0.4581 - E_{cell}}{0.0591}$$

(4) pH =
$$\frac{0.0591 - E_{cell}}{0.4581}$$

143. In cathodic protection of metal from corrosion, the current is leaked to the ground from any conductor and the current is known as

(1) cathodic current

(2) over-voltage

(3) sacrificial current

(4) stray current

144. The total energy operator is called as

(1) Hermitian operator

(2) Hamiltonian operator

(3) Linear operator

(4) Addition of operator

145. For a sound wave, as per the postulates of quantum mechanics, the wave function is a function of

(1) Temperature

(2) Magnetic moment

(3) Time

(4) Energy

140.	In Schrodinger's wave equation, the symbol w represents							
	(1)	(1) wavelength of the spherical wave						
	(2)	amplitude of the spherical wave						
	(3)							
	(4)							
147.	It is only the absorbed light radiations that are effective in producing a chemical reaction is the							
	(1)	Beer's law	(2)	Einstein's law				
	(3)	Grothus – Draper law	(4)	Bunsen – Roscoe's law				
148.	Which process stops as soon as the incident radiation is cut off?							
	(1)	Fluorescence	(2)	Phosphorescence				
	(3)	Chemiluminescence	(4)	None of the above				
149.	Photosensitizer is a substance which can							
	(1)	take part in the chemical reaction						
	(2)	only absorbs the radiant energy						
	(3)	only transfers the radiant energy						
	(4)	absorbs and transfers radiant energy						
150.	In a Jablonski diagram depicting various photophysical processes, the non-radiative processes of intersystem crossing, internal conversion and vibrational relaxation are indicated by the							
	(1)	Horizontal lines	(2)	Vertical lines				
	(3)	Wavy lines	(4)	Diagonal lines				
SPAC	E FO	R ROUGH WORK						

सूचना - (पृष्ठ 1 वरुन पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतः बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

Q. No. 201.	I congratula	te you	your	grand success.
	(1) for	(2) at	(3) on	(4) about

ह्या प्रश्नाचे योग्य उत्तर "(3) on" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव खालीलप्रमाणे प्र.क्र. 201 समोरील उत्तर-क्रमांक "③" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्रश्न क्र. 201. (1) (2) (4)

Pick out the correct word to fill in the blank:

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK