थार्घन्याञ्जाता , प्राणिशास्त्र चास्त्री परीक्षा- 2009

2011 Code: ROM

परीक्सा दिः १२/२२/२०१२ प्रश्नपुस्तिका क्रमांक BOOKLET No.

प्रश्नपुरितका चाळणी परीक्षा

एकूण प्रश्न : 150

वेळ : $1\frac{1}{2}$ (दीड) तास

प्राणीशास्त्र विषयक ज्ञान

एकुण गुण: 150

380

सूचना

सदर प्रश्नपुस्तिकेत 150 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिका समवेक्षकांकड्न लगेच बदलून घ्यावी.

आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

परीक्षा-क्रमांक शेवटचा अंक केंद्राची संकेताक्षरे

- वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास द्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची अचुक उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार भुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर

100 सूचनेविना पर्यवेक्षकांच्या

ROM 2

कच्च्या कामासाठी जागा / SPAGESFORTROOGIFWOME कि

1

1.	Which animal has chief mode of nutrition as halophytic?											
	(1)	Plasmodiun	n		(2)	Amoeba						
	(3)	Paramoeciu	ım 		(4)	Euglena	- 					
2.	То	whose larvae	, the	echinoderm larva	e has	a close resembla	nce ?					
	(1)	Annelids	(2)	Coelenterates	(3)	Arthropods	(4)	Poriferans				
3.	Whi	Which locomotory organ does Amoeba possess?										
	(1)	Flagella	(2)	Pseudopodia	(3)	Cilia	(4)	None of these				
4.	Nar	ne the anima	ıl in v	vhich conjugation	occur	s.						
	(1)	Euglena	(2)	Giardia	(3)	Noctiluca	(4)	Paramoecium				
5.	Wha	What does Giardia cause ?										
	(1)	Malaria			(2)	Sleeping sickne	ss					
	(3)	Diarrhoea			(4)	Kala azar						
6.	In v	which animal	is th	e most advanced	leucor	n type canal syst	em fou	nd ?				
	(1)	Aphodal	(2)	Rhagon	(3)	Diploidal	(4)	Euryphylus				
7.	Whi	Which is the first step in the development of skeleton around the protozoa?										
	(1)	Theca	(2)	Lorica	(3)	Envelop	(4)	Test				
8.	Wha	at are the ve	rtical	branches of Obel	lia colo	ony called ?		·				
	(1)	Gonotheca	(2)	Hydrotheca	(3)	Hydrorhiza	(4)	Hydrocauli				
9.	Nar	ne the shallo	w cora	al reef extending	from t	he shore upto 1/4	1 miles	into sea water.				
	(1)	Barrier reef	f		(2)	Fringing reef						

0.	Which is the larval stage of Taenia Solium?									
	(1)	Onchosphere	(2)	Miracidium						
	(3)	Redia	(4)	Cercarium						
1.	How	can we prevent from Ascaris?								
	(1)	Keeping good sanitary conditions								
	(2) Eating fresh raw vegetables and nuts									
	(3) Washing hands without antiseptic soap									
	(4)	Drinking excess of water								
2.	How	many pairs of pulsatile hearts ar	e prese	ent in earthwor	m ?					
	(1)	3 (2) 4	(3)	5	(4) 6					
3.	Nan (1) (3)	ne the animal which is sanguinovo Arenicola Leech	(2)	habit. Chaetopterus Aphrodite						
4.	Whi	ch connecting link has been show		nchosphorous ?						
	(1)		_							
	(2)	Entoprocts and Nemertines								
	(2) (3)	Entoprocts and Nemertines Annelids and Arthropods								
	-	Entoprocts and Nemertines Annelids and Arthropods Ectoprocts and Brachiopods								
.5.	(3)	Annelids and Arthropods	_	s possess ?						
.5.	(3)	Annelids and Arthropods Ectoprocts and Brachiopods	_	s possess ? Sponging type						
	(3) (4) Whi	Annelids and Arthropods Ectoprocts and Brachiopods ch type of mouth parts do the hou		•						
5.	(3) (4) Whi (1) (3)	Annelids and Arthropods Ectoprocts and Brachiopods ch type of mouth parts do the hou Piercing and Sucking type Chewing and Lapping type	(2) (4)	Sponging type Biting and Ch						
15.	(3) (4) Whi (1) (3)	Annelids and Arthropods Ectoprocts and Brachiopods ch type of mouth parts do the hou Piercing and Sucking type	(2) (4)	Sponging type Biting and Ch						

ROM

17.	At what angle is the body of gastropods rotated on a vertical axis during complete torsion?										
	(1)	360°	(2) 1	80°	(3)	90°	(4) 60°				
18.		ich organ in entry and			ng ate d fu	nnel or sip	hons during respir	ration for			
	(1)	Pulmonar	y sacs		(2)	Gills					
	(3)	Trachea			(4)	Nuchal lo	bes				
19.	Whi	ich symmet	ry d oes th	e Liver flu	ke exhibit	?					
	(1)	Bilateral			(2)	Radial					
	(3)	Asymmetr	гу		(4)	None of th	nese				
20.	Whi	ich animal	has no ma	adreporite (?						
	(1)	Crinoids			(2)	Holothuro	ids				
	(3)	Echinoids			(4)	Ophiuroid	s				
21.		ich of th	e followi	ng charac	teristics	of Balano	glossus resembles	that of			
	(1)	Gill slits a	and their l	olood suppl	y						
	(2)	Possession	of notoch	ord							
	(3)	Possession	of dorsal	hollow ner	ve cord						
	(4)	All of thes	se								
22.	Wha	at is meani	ng of the	term 'Retro	gressive r	netamorpho	osis' ?				
	(1)	Larva sho	ws more a	idvanced cl	naracters t	than the ad	ult				
	(2)	Larva sho	ws less ad	lvanced cha	racters th	an the adu	lt				
	(3)	Larva doe	s not shov	v metamorj	phosis						
	(4)	Larva sho									

23. Which of the following is true in case of gills of bony fish?											
	(1)	They do not have gill rakers	(2)	They open via gill slits							
	(3)	They are filiform	(4)	They are lamelliform							
24.		ich of the following structures ling?	of Amp	phioxus form a grating to help filter							
	(1)	Velar tentacles	(2)	Oral cirri							
	(3)	Oral palps	(4)	All of these							
25.	Wha	at mode of parental care is shown	by Eur	opean Midwife Toad, Alytes ?							
	(1) Building nest										
	(2) Female carrying eggs on the back										
	(3) Male carrying eggs round the back and thighs										
	(4) Female carrying eggs in brood pouch										
26.	From the time of their emergence, amphibians have remained imperfectly adapted for terrestrial life because										
	(1)	they cannot breath out of water f	or a lor	ng time							
	(2)	their food source is chiefly found	in wate	er ,							
	(3)	they need aquatic habitat to bree	d								
	(4)	All of these									
27.	Neo	tenic forms are exhibited in which	of the	following order of Amphibia ?							
	(1)	Anura (2) Urodela	(3)	Apoda (4) All of these							
28.	Whi	ich of the following early reptiles a	ire also	called 'stem reptiles' ?							
	(1)	Pleisiosaurs	(2)	Cotylosaurs							
	(3)	Dinosaurs	(4)	Ichthyosaurs							
	OF F0	NO DOLLOW WORK									

29.	Which type of reptilian skull has a single temporal fossa that separates post orbital and squamosal bone?										
	(1)	Anapsid	(2)	Diapsid	(3)	Synapsid	(4)	Parapsid			
30.	Poisor	n gland fou	ınd in	venomous sna	kes is a r	nodified					
	(1)	sub-lingual	gland	l	(2)	parotid gland					
	(3)	sub-maxilla	ary gla	ind 	(4)	mandibular g	land				
31.	The r	eduction or	comp	lete loss of flig	ght has ta	iken place in fl	ightless	birds due to			
	(1) absence of predators										
	(2) it allowed reduction in wing size										
	(3)	assumption	of bu	lk mass of mu	scles						
	(4) All of these										
32.	The n	avigational	l abilit	ty amongst the	e migratir	ng birds is esse	ntially d	ue to			
	(1) f	following ro	outes a	and landmarks	3						
	(2) t	the altitude	e of mi	grating land							
	(3) i	nherited in	nstinct								
	(4) accuracy and regularity of migration										
	(4)	accuracy ar	nd reg	ularity of migr	ation	<u> </u>					
33.				ularity of migr							
33.	Ducks					Schizognathu	s				
33.	Ducks	possess _	thus		palate.	Schizognathu Desmognathu					
33.	Ducks (1) I (3) A	possess Dromeogna Aegithogna	thus thus		palate. (2) (4)	Desmognathu					

- **35.** The dental formula $2\left[i \frac{3}{3} c \frac{1}{1} pm \frac{4}{4} m \frac{3}{3}\right]$ is of
 - (1) Human permanent dentition
- (2) Human milk dentition

(3) Horse dentition

- (4) Cow dentition
- 36. Marsupials are mammals belonging to Infra class
 - (1) Prototheria (2)
 - Metatheria
- (3) Theria
- (4) Eutheria
- 37. Which of the following is not an exclusively ectodermal derivative?
 - (1) Hair
- (2) Nail
- (3) Horn
- (4) Tooth
- 38. Which of the following classes possesses only the right systemic arch?
 - (1) Aves
- (2) Reptilia
- (3) Amphibia
- (4) Mammalia

- 39. Neuromast are the sensory cells present in
 - (1) olfactory organs of fishes
- (2) lateral lines of fishes
- (3) inner ear of vertebrates
- (4) middle ear of vertebrates
- 40. The functional kidney of an adult mammal is developed from
 - (1) pronephros

(2) mesonephros

(3) prenephros

- (4) metanephros
- 41. Body temperature regulating center is situated in
 - (1) Limbic system

(2) Lateral lemniscus

(3) Hypothalamus

(4) Anterior thalamic nucleus

42.	2. Fresh water bony fishes maintain water balance by excreting										
	(1)	Ammonia	(2)	Urea							
	(3)	Guanine	(4)	Waste in the form of Uric acid							
43.	Pep	sinogen is secreted by									
	(1)	Chief cells	(2)	Oxyntic cells							
	(3)	Parietal cells	(4)	Goblet cells							
44.	Following are the phases of gastric juice secretion except										
	(1)	•	(3)								
45.	The aim to release stepwise energy in respiration is										
	(1)	To conserve more energy	(2)	To prevent cell damage							
	(3)	To maintain body temperature	(4)	All of these							
46.		Following are the factors affecting filtration of substances through glomerular membrance except									
	(1)	Temperature	(2)	Molecular weight							
	(3)	Effective diameter	(4)	Electrical charges							
47.	Following are functions of Eosinophils except										
	(1)	antibody production	(2)	ingestion of foreign proteins							
	(3)	defence against parasites	(4)	help in resolution and healing							
48.	Foll	owing are the refractive media of l	human	eye except							
	(1)	Cornea	(2)	Retina							

49.	One haemoglobin molecule has										
	(1)	one haem and one globin	(2)	four haem and four globin							
	(3)	two haem and two globin	(4)	three haem and two globin							
50.	Sur	factant present in the alveoli is r	esponsib	le fo r							
	(1)	collapse of lung	(2)	increasing the surface tension							
	(3)	reducing the surface tension	(4)	no effect on the surface tension							
5 1.	In h	numan ear, impedance matching	causes								
	(1) increase in pressure at oval window										
	(2)										
	(3)	increase in frequency at oval wi	ndow								
	(4) decrease in frequency at oval window										
52.	Foll	owing hormones are secreted by	anterior	pituitary gland except							
	(1)	ACTH (2) FSH	(3)	Prolactin (4) ADH							
			(-)	Froiactin (4) ADII							
 53.	Gro	wth hormone has following effect		· · · · · · · · · · · · · · · · · · ·							
 53.	Gro	wth hormone has following effect	s <i>except</i>	rrotactiii (4) ADII							
<u></u> -53.		increased rate of protein synthe	s <i>except</i>	rrotactiii (4) ADII							
53.	(1)	increased rate of protein synthe	s except sis tion								
53.	(1) (2)	increased rate of protein synthe	s except sis tion tion by c								
53. 54.	(1) (2) (3) (4)	increased rate of protein synthed decreased rate of glucose utilizatincreased rate of glucose absorp	s except sis tion tion by c	ells							
	(1) (2) (3) (4)	increased rate of protein synthed decreased rate of glucose utilization increased rate of glucose absorptincreased mobilization of fatty a	s except sis tion tion by c	ells							

55.	BMR is controlled by											
	(1)	ADH	(2)	GH	(3)	Thyroxine	(4)	ACTH				
56.	Dial	betes insipi	dus is d	caused due to th	ne defici	ency of						
	(1)	Oxytocin	(2)	Vassopressin	(3)	Insulin	(4)	Glucagon				
57.		After transmission of one impulse from the synapse, it cannot transmit another impulse because one of the following chemicals is active there:										
	(1)	Choline	(2)	Acetylcholine	(3)	Cholinesterase	(4)	Acetic acid				
58.	Syn	aptic fatigu	e is du	e to								
	(1)	release of	more a	cetylcholine	(2)	release of more	adren:	aline				
	(3)	release of	more n	oradrenaline	(4)	exhaustion of r	neurotra	ansmitter				
59.	duri		ncy, sec		-	ry is responsible rth and functio						
	(1)	FSH	(2)	LTH	(3)	Prolactin	(4)	ADH				
60.	Test	tosterone is	secrete	ed by								
	(1)	Sertoli cel	ls		(2)	Leydig cells						
	(3)	Spermatoz	zoa		(4)	Secondary sper	matocy	te				
61.	Ene	rgy flow in	the eco	system is								
	(1)	Unidirecti	onal		(2)	Amphidirectional						
	(3)	Multidirec	tional		(4)	None of these						

62.	The nitrogen cycle is of type										
	(1)	Sedentary	(2)	Hydrological							
	(3)	Gaseous	(4)	None of these							
63.	The	source of phosphorus in the natu	ıre is								
	(1)	Volcanoes	(2)	Sedimentary rocks							
	(3)	Both (1) and (2)	(4)	Fresh water							
64.	Fixa	Fixation of nitrogen is carried out by all the following except									
	(1)	Avicennia (2) Rhizobium	(3)	Anabaena (4) Nostoc							
65.	The	The first trophic level in the exchange of energy is									
	(1)	Decomposers	(2)	Consumers							
	(3)	Producers	(4)	None of these							
66.	Gre	en house effect is									
	(1)	moisture layer in the atmospher	re								
	(2)	ozone layer in the atmosphere									
	(3)	infra red waves reach the earth									
	(4)	increase in temperature due to	increase	in CO ₂ concentration of atmosphere							
67.	The effects of ozone on human health are all the following except										
	(1)	extreme fatigue	(2)	atherosclerosis							
	(3)	nose and throat irritation	(4)	pulmonary oedema							
68.	The	greatest problem in water conse	rvation is	to reduce the amount of							
	(1)	Ground water	(2)	Precipitation							
	(3)	Evaporation	(4)	Run-off water							

69.	The volant adaptations of birds are all the following except											
	(1)	stream-line	d bod	y	(2)	developmen	t of feathe	rs				
	(3)	developmer	nt of a	ir-sacs	(4)	absence of	urinary bla	dder				
70.	The	following ar	e the	desert adaptati	ions of a	nimals excep	ot					
	(1)	developmer	nt of p	arapodia	(2)	(2) moisture getting						
	(3)	moisture co	nserv	ation	(4)	self-defence against scorching sun						
71.	The	The following are the National Parks in Maharashtra except										
	(1)	Tadoba	(2)	Navegaon	(3)	Gir	(4)	Pench				
72 .		Which endangered animal is the source of the world's finest, lightest, warmest and most expensive wool — the Shahtoosh?										
	(1)	Cheetah	(2)	Nilgai	(3)	Chiru	(4)	Kashmiri goat				
73.	Proj	ect Tiger wa	ıs star	ted in		,						
	(1)	1973	(2)	1975	(3)	1987	(4)	1988				
74.	Red	Data Book	is fam	ous for								
	(1)	endangered	l plant	ts	(2)	endangered	animals					
	(3)	extinct plan	nts	·	(4)	endangered	plants and	l animals				
75.	The	The resemblance of the warning colouration of one noxious species to another is										
	(1)	Batesian m	imicry	7	(2)	Mullerian r	nimicry					
	(3)	Martesian	mimic	ry	(4)	Auto mimic	ry					
76.	Who	proposed th	ne flui	d mosaic model	of prote	ein ?						
	(1)	Gilter (1972	2)		(2)	Singer and	Nicolson (1972)				
	(3)	Garter and	~	1.1.(1000)	(4)	Danielli an		4.60 41				

77.	Which spaces of Endoplasmic Reticulum are rounded, spherical and ovoidal?									
	(1)	Cisternae	(2)	Tubules	(3)	Cytomembranes	(4)	Vesicles		
78.	Whi	ich part of th	e spei	rmatozoa is de	erived fro	m Golgi body sper	mati	d ?		
	(1)	Acrosome	(2)	Tail	(3)	Nucleus	(4)	Cytoplasm		
79 .	On	hydrolysis, w	hat d	o the ribosome	es produc	ee?				
	(1)	Acidic prote	in an	d DNA	(2)	Protein and DNA				
	(3)	Split protei	n and	rRNA	(4)	Basic protein and rRNA				
80.	In v	what do mito	chond	ria help ?						
	(1)	Protein syn	thesis		(2)	Development of r	nyofi	brils		
					(4)	Formation of lysosomes and vacuole				
	(3)	Removal of	exhau	isted cells	(4)					
81.	On		synthe			nany distinct perio		ne interphase of		
81.	On	the basis of	synthe					-		
81.	On mito	the basis of osis is divided 5	synthed?	etic activities,	in how r	nany distinct perio	ods tl	-		
	On mito	the basis of osis is divided 5	synthed? (2) gest p	etic activities,	in how r (3) is ?	nany distinct perio	ods tl	2		
	On mito (1) Whi (1)	the basis of osis is divided 5 ich is the lon Prophase I	synthed? (2) gest p	etic activities, 4 chase of meios	in how r (3) is ? (3)	nany distinct perio	(4)	2		
82.	On mito (1) Whi (1)	the basis of osis is divided 5 ich is the lon Prophase I	synthed? (2) gest p (2) v of th	etic activities, 4 hase of meios Prophase II	in how r (3) is ? (3)	nany distinct perio	(4)	2		
82.	On mito (1) Whi (1)	the basis of osis is divided 5 ich is the lone Prophase I	synthed? (2) gest p (2) 7 of th	etic activities, 4 hase of meios Prophase II te band of poly ve	in how r (3) is ? (3) tene chr	nany distinct perio	(4)	2		
82.	On mit(1) Whi (1) Wha (1) (3)	the basis of osis is divided 5 ich is the lon Prophase I at is property Temporary Permanentl	synthed? (2) gest p (2) of the inacting inactina	etic activities, 4 hase of meios Prophase II te band of poly ve	(3) is ? (3) rtene chr (2) (4)	nany distinct period 3 Metaphase omosome ? Temporary active	(4)	2		
82. 83.	On mit(1) Whi (1) Wha (1) (3)	the basis of osis is divided 5 ich is the lon Prophase I at is property Temporary Permanentl	synthed? (2) gest p (2) of the inaction of the	etic activities, 4 Phase of meios Prophase II te band of poly ve	(3) is ? (3) rtene chr (2) (4)	nany distinct period 3 Metaphase omosome ? Temporary active	(4) (4) ve	2 Anaphase		

85.	What is the other name of informosomes?									
	(1)	mRNA	(2)	rRNA	(3)	tRNA	(4) DNA			
86.	Wha acid		nucleoti	ide sequenc	e of mRN	A which code	es for a particular amino			
	(1)	Phosphat	e group		(2)	Sugar group				
	(3)	Code			(4)	Nucleosite				
87.	How code	=	rogenous	s bases of m	RNA are pr	resent in a coo	don of the modern genetic			
	(1)	3	(2)	4	(3)	1	(4) 2			
88.	In v	what way t	he punc	tuation help	on polycis	tronic mRNA	?			
	(1)	For addin	ng the di	fferent cistro	ons					
	(2)	For elimi	nating tl	ne different	cistrons					
	(3)	For synth	esizing	the different	cistrons					
	(4)	For frami	ing the r	new cistrons						
89.	In v	which group	p of chro	omosomes th	e arms are	'V' shaped ?				
	(1)	Acrocentr	ric		(2)	Telocentric				
	(3)	Metacent			(4)	Submetacen	tric			
90.			nzymatic				which mRNA is copied or			
	(1)	DNA dire	cted DN	A polymeras	se					
	(2)	RNA dire	cted DN	A polymeras	se					
	(3)	DNA dire	cted RN	A polymeras	se					
	(4)	RNA dire	cted RN	A polymeras	se .		· ·			
SPA	CE FO	R ROUGH V	WORK				D T			

91.	The	melting poin	nt of n		_ compared to nuclear DNA.			
	(1)	higher	(2)	similar	(3)	lower		negligible
92.	Whi	ich nitrogeno	us bas	se is substitu	ted in RNA	A in place of	thymine of	DNA ?
	(1)	Adenine		Guanine	(3)		(4)	_
93.	Wha	at type of nu	clei ar	e present in	RBCs of m	an ?		
	(1)	Mononucle	ate		(2)	Anucleate		
	(3)			· · ·		Multinucle		
94.				e Lampbrush		nes in amph		
	(1)	J. Roberts	(1892)		(2)	Miller and	Beatty (196	39)
	(3)		•	(1960)		0	(1882)	
95.	Hov	v many types	s of en	zymes are re	quired in r	eplication of	DNA ?	
	(1)	5		3	(3)		(4)	
96.		plant hetero	zygous					h tall and dwarf
	(1)	Dominance			(2)	Purity of g	ametes	
	(3)	Independer	nt asso	rtment	(4)		dominance	
97.				nt for yellow r		(YyRr) is se	lf pollinated	, the phenotypic
	(1)	12:3			(2)	9:7	-	
	(3)	9:3:3:1			(4)	1:2:2:1	: 4:1:2:	2:1

<i>J</i> 0.	1116	ciiroinosome u	ledry of illikage is	ormura	ited by			
	(1)	Morgan and C	Castle	(2)	Sutton and Bo	veri		
- 	(3)	Bateson and I	Punnett	(4)	Mendel and L	amprech	nt	
99.	The	important feat	ures of multiple all	eles ar	e all the followi	ng excep	pt	
	(1)	always occupy	the same locus					
	(2)	crossing-over	occurs within the al	leles of	same multiple	allele se	eries	
	(3)	no crossing-ov	er occurs within the	e alleles	s of same multi	ple allel	e series	
	(4)	always influer	ice the same charac	ter			•	
100.			of polyploids are t	the following except				
	(1)	Autopolyploid		(2)	Allopolyploid			
	(3)	Aneupolyploid		(4)	Autoallopolypl	oid		
101.	The	point mutation	may occur due to					
	(1)	deletion muta	tion	(2)	inversion muta	ation		
	(3)	insertion muta	ation	(4)	substitutional	mutatio	n	
102.	The	webbed neck is	s a characteristic of	?				
	(1)	XXY (2) XYY	(3)	XY	(4)	хо	
103.	Dow	n's syndrome is	s a typical case of					
	(1)	Monosomy (2) Trisomy	(3)	Nullisomic	(4)	Tetraploid	
104.	The	term Eugenics	was coined by					
104.	The (1)	term Eugenics Francis Galtor	<u>-</u>	(2)	H.J. Muller			

1

105.	A cl	one of Sheep	Dolly	was developed	by						
	(1)	Ian Wilmut			(2)	Robert Brick	s				
	(3)	Ian Koch			(4)	Hales					
106.	Hun	nan Genome	Projec	ct was launched	l in						
	(1)	1986	(2)	1990	(3)	1996	(4)	1998			
107.	The	technique of	DNA	fingerprinting	was pior	neered and pe	rfected by				
	(1)	Beadle			(2)	Francois Jac	cob				
	(3)	Jacques Mo	nod		(4)	Alec Jeffreys	3				
108.	The	The basis used for DNA fingerprinting needs									
	(1)	availability	of clo	ned DNA	(2)	availability o	of VNTRs				
	(3)	availability	of hu	man genome	(4)	variations in	the offsp	rings			
109.	The	transgenic a	nimal	has							
	(1)	foreign DNA	A in a	ll its cells	(2)	foreign DNA	in some o	of the cells			
	(3)	foreign RNA	A in a	ll its cells	(4)	Both (2) and	1 (3)				
110.	A di	rect procedu	re to c	copy the gene s	equence	of interest is	called				
	(1)	PCR	(2)	BCG	(3)	PIR	(4)	CPU			
111.	Whi	ch language	is mos	st suitable for t	he work	of Bioinforma	atics ?				
	(1)	XML	(2)	HTML	(3)	PERL	(4)	Java			
110			_ C	-4:an 4n 234:0	. C	- oI dom:	£				
112.				atics to identify			_				
	(1)	PROSITE	(2)	BLOCKS	(3)	PRINTS	(4)	All of these			

113.	One of the following helps in identification and interpretation of protein sequencing informations:										
	(1)	PCR	(2)	NCBI	(3)	NBRF	(4)	EBI			
114.	One	of the follow	ving i	s a protein dat	abase :						
	(1)	Mito		,	(2)	SWISS-PROT					
	(3)	NCBI			(4)	Gene Bank					
115.	Whi	ch chemical	datab	ase is used to	search se	equences of metab	olic e	enzymes ?			
	(1)	DDBJ			(2)	PDB					
	(3)	Ligand			(4)	Molecular biolog	у				
116.	Whi	ch of the foll	owing	monosacchari	des is a	ketose ?					
	(1)	Glucose	(2)	Galactose	(3)	Fructose	(4)	Ribose			
117.	Whi	ch polysaccha	aride	is present in t	he bacter	rial cell wall ?					
	(1)	Chitin	(2)	Murein	(3)	Lignin	(4)	Pectin			
118.	Whi	ch of the foll	owing	is an unsatur	ated free	e fatty acid?					
	(1)	Oleate	(2)	Palmitate	(3)	Stearate	(4)	Laurate			
119.	Cera	amide is the	precu	rsor of which c	lass of li	ipids ?					
			1:		(2)	Triglycerides					
	(1)	Sphingomye	un								
	(1) (3)	Sphingomye Waxes	911N 		(4)	None of these					
120.	(3)	Waxes		ot have choles		None of these its precursor ?					
120.	(3)	Waxes	loes n	ot have choles				, , <u>-</u>			

121.	Which of the following is a sulphur containing amino acid?									
	(1)	Methionine	(2)	Valine	(3)	Glycine	(4)	Serine		
122.	Hae	emoglobin is a	prot	ein that posses	sses	level	of struct	ure.		
	(1)	primary	(2)	secondary	(3)	tertiary	(4)	quaternary		
123.	Fibr	roin protein th	nat m	nakes silk has a	a structi	ire which is				
	(1)	α-helical			(2)	β-pleated she	eet			
	(3)	triple helix			(4)	None of thes	e			
124.	Con	version of α-k	cetogl	utarate to succ	cinyl-CoA	A is a	re	eaction.		
	(1)	oxidation			(2)	oxidative phosphorylation				
	(0)	oxidative de	aarba	vylation	(4)	dehydrogena	tion			
	(3)		carbo		(4)					
 125.	How	<u></u>	ules	of ATP are ma				cule that enters		
125.	How	v many molec	ules	of ATP are ma			AD molec	cule that enters		
	How the (1)	v many molec electron trans Two	ules sport (2)	of ATP are ma	de for e	ach reduced F	AD molec			
	How the (1)	v many molec electron trans Two	ules sport (2)	of ATP are ma chain ? Three ncy causes perm	de for e	ach reduced F One naemia ?	CAD molec			
126.	How the (1) Whi (1) Ove	w many molected transformation of the state	ules sport (2)	of ATP are machain ? Three ncy causes perm B ₂	(3)	one One B ₆	(4)	None of these		
126.	How the (1) Whi (1) Ove	w many molected electron transformation. Two \mathbf{B}_1	ules sport (2)	of ATP are machain ? Three ncy causes perm B ₂	(3)	one One naemia ? B ₆	(4) (4) d reaction	None of these		
126. 127.	How the (1) Whi (1) Over the (1)	w many molected electron transform. Two Sch vitamin descriptions of the property of every 5°C	(2) eficien (2) 0 - 40	of ATP are machain? Three ncy causes perm B ₂ 0°C, the rate of 2°C	(3) f an enz	one One naemia ? B ₆ cyme controlle	(4) (4) (4)	None of these B ₁₂ n is doubled for		
126. 127. 128.	How the (1) Whi (1) Ove the (1) As p	w many molected electron transform. Two Sch vitamin descriptions of the property of every 5°C	(2) eficien (2) 0 - 40	of ATP are machain? Three ncy causes perm B ₂ 0°C, the rate of 2°C	(3) f an enz	one One naemia ? B ₆ cyme controlle	(4) (4) (4)	None of these B ₁₂ is doubled for		

	Which is the most important control element/enzyme in the glycolytic parammals?								
	(1)	Pyruvate kinase	(2)	Phosphofructokinase					
	(3)	Hexokinase	(4)	Glucokinase					
30.	То у	which class does the vaccine pr	oduced aga	inst diphtheria belong?					
	(1)	Killed organisms	(2)	Toxoid					
	(3)	Edible vaccine	(4)	Live vaccine					
31.	The	HIV virus which causes AIDS	mainly info	ects cells.					
	(1)	T-helper cells	(2)	T-killer cells					
	(3)	T-suppressor cells	(4)	All of these					
32.	(1)	ch type of lymphatic cell is res NK cells Memory cells	(2)	Macrophages					
	(1)	NK cells Memory cells							
	(1) (3) Mon	NK cells Memory cells noclonal antibodies are used in	(2)	Macrophages Plasma cells					
	(1) (3) Mon (1)	NK cells Memory cells noclonal antibodies are used in pregnancy testing	(2)	Macrophages Plasma cells treating diseases					
	(1) (3) Mon	NK cells Memory cells noclonal antibodies are used in	(2)	Macrophages Plasma cells					
33.	(1) (3) Mon (1) (3)	NK cells Memory cells noclonal antibodies are used in pregnancy testing immunesuppressors	(2) (4) (2) (4)	Macrophages Plasma cells treating diseases					
33.	(1) (3) Mon (1) (3)	NK cells Memory cells noclonal antibodies are used in pregnancy testing immunesuppressors	(2) (4) (2) (4)	Macrophages Plasma cells treating diseases All of these					
33.	(1) (3) Mon (1) (3) Whi	NK cells Memory cells noclonal antibodies are used in pregnancy testing immunesuppressors ch of the following enzymes sy	(2) (4) (2) (4) nthesizes D	Macrophages Plasma cells treating diseases All of these puplex DNA from RNA template?					
33.	(1) (3) Mon (1) (3) Whi (1) (3)	NK cells Memory cells noclonal antibodies are used in pregnancy testing immunesuppressors ch of the following enzymes sy DNA polymerase	(2) (4) (2) (4) nthesizes D (2) (4)	Macrophages Plasma cells treating diseases All of these puplex DNA from RNA template? Reverse transcriptase RNA transcriptase					

136.	Whi	ich animal ha	s nor	n-flagellate	ed sperm ?		
	(1)	Sea urchins			(2)	Ascaris	
	(3)	Echidna			(4)	Frog	
137.	How	v many phase	s are	involved	in oogenesis	?	
	(1)	2	(2)	3	(3)	4	(4) 5
138.		at do you call ere ?	the	jelly layer	of eggs of a	mphibian w	hich help in protection and
	(1)	Primary egg	men	nbrane	(2)	Secondary	egg membrane
	(3)	Tertiary egg	men	nbrane	(4)	Vitelline n	nembrane
139.		at is involved making it ca					ng material from the sperm
	(1)	Chemotaxis			(2)	Cortical re	action
	(3)	Amphioxus			(4)	Capacitation	on
140.		ch material o			helps the sp	erm to diss	olve the matrix of cumulus
	(1)	Hyaluronida	ıse		(2)	Fertilizin	
	(3)	Jelly			(4)	Lysosome	
141.		at do you cal nout the parti				of an emb	oryo from a female gamete
	(1)	Parthenogen	esis		(2)	Sexual rep	roduction
	(3)	Asexual rep	roduc	tion	(4)	Syngamy	
142.	The	development	of w	hich anim	al shows inde	eterminate o	cleavage ?
	(1)	Nematodes			(2)	Echinodern	ms
					\-/		110

143.	What do you call it if during gastrulation, the blastomere separates or splits off fro a pre-existing layer or mass to become the hypoblast?									
	(1)	Infilteration	(2)	Invagination	(3)	Involution	(4)	Delamination		
144.	Which fetal membrane acts as a reservoir of embryonic excretory waste such as acid?									
	(1)	Amnion	(2)	Chorion	(3)	Allantois	(4)	Yolk sac		
145.		which placents	a the	chorionic villi	remain	s scattered all o	ver the	surface of the		
	(1)	Diffused	(2)	Cotyledonary	(3)	Zonary	(4)	Discordal		
146.		which contrace or surgical ope			as defe	erens on each sid	le is cu	t and tied in a		
	(1)	Tubectomy			(2)	Vaginal douche	;	•		
	(3)	Spermaticida	al jell	ies	(4)	Vasectomy				
147.	Nan	ne the giant fi	resh	water prawn.						
	(1)	Macrobrachi	um r	osenbergii	(2)	Penaeus indicu	s			
	(3)	Parapenaeop	sis so	culptilis	(4)	Metapenaeus m	onocero	s		
148.	Whi	ch is the prop	er pl	ace for rearing	silkwor	rms ?				
	(1)	Machana	(2)	Dalas	(3)	Baskets	(4)	Rearing trays		
149.	Which component does the pearl contain abundantly?									
	(1)	Water			(2)	Organic matter				
	(3)	Calcium carb	onat	e	(4)	Residue				
150.	Nan	ne the most po	pula	r American clas	s of he					
	(1)	Plymouth Ro	ck		(2)	Langshan				
	(3)	Cornish			(4)	White Leghorn				
OD A C	YE FO	P POLICH WOL								

सूचना - (पृष्ठ 1 वरुन पुढे....)

- प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतः बरोबर (9)परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

	नमुना प्रश्न
Pick out the	correct word to fill in the blank :
Q. No. 201.	I congratulate you your grand success.
	(1) for (2) at (3) on (4) about
ह्या	प्रश्नाचे योग्य उत्तर "(3) on" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव
खालीलप्र आवश्यक	माणे प्र.क्र. 201 समोरील उत्तर-क्रमांक " ^③ " हे वर्तुळ पूर्णपणे छायांकित करून दाखिवणे आहे.
प्रश्न क्र.	201. 1 2 4
आ	शा पद्धतीने प्रस्तत प्रश्नपस्तिकेतील प्रत्येक प्रश्नाचा तमचा उत्तरक्रमांक हा तम्हाला स्वतंत्ररीत्य

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा.