पर्यवेक्षकांच्या सूचनेविना हे

उघड

सील

मधराष्ट्र कृषी सेवा मुख्य परीक्षा- 2002 परीक्षा दि: 29 जुले, 2013

2012

CODE: FO2

प्रश्नपुस्तिका क्रमांक BOOKLET NO.

प्रश्नपुस्तिका

एकण प्रश्न : 200

कृषि अभियांत्रिकी

एकण गुण: 400

सूचना

(1) सदर प्रश्नपुस्तिकेत 200 अनिवार्थ प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

(2) आपला परीक्षा- क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

वेळ : 2 (दोन) तास

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे **न विसरता नमृद करावा**.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तर सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपित्रकेवरील सूचनेप्रमाणे तुमच्या उत्तरपित्रकेवर नमूद करावा अशा प्रकारे उत्तरपित्रकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकिरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण **एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालिवता पुढील प्रश्नांकडे वळावे.** अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमृद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडिवलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नांचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

महाराह्य केथा: माना मुख्या पर्यामा: १८०६ हैं हरकर मिन्द्र १८०६ हैं से स्टब्स अंग्रेस

SPACE FOR ROUGH WORK

 \mathbf{A}

1.	Con	nplete the following sente	ence mear	ningfu	ully.						
		pressure or head developed is a function of	ped by a g	given	n centrifugal pump in a sprayer at a particula						
	(1)	Pump capacity		(2)	Total head						
	(3)	Spray volume		(4)	Discharge rate						
2.	At v	what temperature standar	d thermo	stat v	valves are designed to fully open ?						
	(1)	70°C (2)	75°C		(3) 85°C (4) 82°C						
3.	Hov	w much is the air compres	ssed in a o	compr	ompression stroke of 4 stroke diesel engine?						
	(1)	1/6 th of engine volume		(2)	1/5 th of engine volume						
	(3)	1/10 th of engine volum	е	(4)	1/12 th of engine volume						
4.	Whe	ere are the centrifugal go	vernors v	ery co	ommon ?						
	(1)	carburator engine		(2)	stationary engine						
	(3)	gas engine		(4)	both (1) and (2) above						
5.	Wha	at type of furrow openers	are wide	ly use	ed in seed drills ?						
	(1)	shovel (2)	shoe		(3) single disc (4) double disc						
6.	What are the essential spare parts of the duster to be kept in stock?										
	(a)	Agitator	(b)	Feed	eding brush						
	(c)	Breast plate	(d)	Feed	ed control lever						
	(1)	(a) and (b)		(2)	(a), (b) and (c)						
	(3)	(a), (b) and (d)		(4)							
7.	Wha	at type of seed metering r	nechanisr	n is co	common on British seed drills ?						
	(1)	fluted feed		(2)	internal double run						
	(3)	cup feed		(4)	star wheel						
8.		at is the power actually re tion to either a pull type (or move the implement at a uniform speed, in implement known as ?						
	(1)	Horse power		(2)	Pto power						
	(3)	Drawbar power		(4)	Hydraulic power						

9.	Wha	at is the force that	hold	s two partic	cles of	the so	oil of the same l	kind tog	ether ?				
	(a)	adhesion		(b)	cohe	esion							
	(c)	internal friction		(d)	shea	ring s	stress						
	Whi	ch of the above o	ption	s is/are cor	rect ?								
	(1)	(c) and (d) only			(2)	(a) c	only						
	(3)	(c) only			(4)	(b) c	only						
10.		at is dropping of a soil called?	the se	eeds in furr	ow lir	nes in	a continuous f	low and	l covering them				
	(1)	drilling	(2)	dibbling		(3)	broad casting	(4)	none of these				
11.	Fill	in the blank corre	ctly.										
		- spray and hollo e spray angles (i.e				-			rayers generally				
	(1)	(1) 60 to 95° (2) 100 to 150° (3) 30 to 45° (4) 10 to 30°											
12.	Hov	v many man hour	s are	required to	harve	est one	e hectare of pac	ldy crop	o ?				
	(1)	170 - 200			(2)	170	- 190						
	(3)	190 - 210			(4)	Non	e of the above						
13.	Whi	ich type of brake i	s use	d in most of	f the p	ower	tiller ?						
	(1)	Outer side expa	nsion	type	(2)	Inne	er side expansio	n type					
	(3)	Both side expan	sion	type	(4)	Non	e of the above						
14.	Wha	at does pneumatio	tyre	consist of ?	1								
	(a)	Breakers	(b)	Casing		(c)	Beads	(d)	Plies				
	(1)	only (b)			(2)	(a),	(b) and (c)						
	(3)	(b) and (d)			(4)	all o	of these						

15.	Com	nplete the follow	ing ser	ntence mear	ningful	lly :					
	In I.	C. engine Tappe	et clear	ance is the	cleara	nce be	etween :				
	(a)	Rocker arm ar	nd push	ı rod							
	(b)	Tappet and th	e cam								
	(c)	Valve head an	d the p	oiston head							
	(d)	Rocker and va	lve ster	m							
	Whi	ich of the above	is/are	correct ?							
	(1)	(a) and (b)	(2)	(d) only		(3)	(b) only	(4)	(c) only		
16.	Fill	in the blank wit	h the co	orrect optio	n.				1 A P 1000		
		otary dusters, th		le should b	e cranl	ked at	r	evolution	s per minute for		
	(1)	15 - 20	(2)	30 - 35		(3)	45 - 50	(4)	10 - 15		
17 .	Wha	at is the working	g capac	ity of whee	l hoe p	oer da	y per man ?				
	(1)										
18.	Wha	at hitching syste	m conr	nects moun	ted im	pleme	ents to a tracto	or?			
	(1)	Drawbar			(2)	PTC) shaft				
	(3)	2 lower links			(4)	3 pc	oint linkage				
19.	Whi	ich of the follow	ing aff	ects the tra	ctive e	fficier	ncy ?				
	(1)	slope of land			(2)	hitch height					
	(3)	shape and size	e of lug	<u>z</u> s	(4)	all t	he above				
20.	The	e few adjustment	s for ol	otaining hig	her pe	netra	tion of the dis	k harrow	in the field are :		
	(a)	By decreasing	the dis	sk angle							
	(b)	By adding ad	ditional	l weight on	the ha	arrow					
	(c)	By increasing	the dis	k angle							
	(d)	By using the s	harp e	dged disks	of sma	ll dia	meter and less	er concav	vity		
	Wh	ich of the above	statem	nents is/are	correc	et?					
	(1)	(a) and (b) on	ly		(2)	(b),	(c) and (d) on	ly			
	(3)	(a) only			(4)	(a) a	and (d) only				

21.	In w	vhat type of fuel injection	on pump, one pur	pump, one pump serves as a nozzle for several cylin							
	(1)	Jerk pump	(2)	Distributor pump							
	(3)	In line jerk pump	(4)	Unit injector							
22.	Fill	in the blank aptly :									
		rate of circulation of the community of		er pump in forced cir	culatio	on water cooling					
	(1)	5 l/BHP/min.	(2)	0.5 l/BHP/min.							
	(3)	15 l/BHP/min.	(4)	0.1 l/BHP/min.							
23.	Wha	at converts the reciproc	ating motion of pi	iston into rotary moti	on of f	lywheel ?					
	(1)	Piston rings (2)	Connecting rod	(3) Crank shaft	(4)	Cam shaft					
24.		at type of cultivator is stacles in the adverse fie	-	in stony, stumpy, ha	rd soil	having roots as					
	(1)	Spring loaded tines	(2)	Rigid tines							
	(3)	Duck foot	(4)	None of these							
25.		What serves as a pulse transformer that transforms or steps up the low voltage to high voltage necessary to jump across gaps at spark plugs ?									
	(1)	Ignition coil (2)	Condenser	(3) Distributor	(4)	Generator					
26.	Whi	ich of the following test	s is not an essenti	al test of tractors ?							
	(1)	Centre of gravity	(2)	Turning circle							
	(3)	Noise measurement	(4)	Drawbar test							
27.	In t	ractors how is the weig	ht transfer express	sed as ?							
	(1)	pull × hitch height wheel base	(2)	pull × wheel base hitch height							
	(3)	pull wheel base	(4)	pull – hitch height wheel base							

28.	Whi	ch brake system is b	ased on the pi	rincip	le of P	'ascal's law ?				
	(1)	Disc brake		(2)	Inte	rnal expanding	shoe b	rake		
	(3)	External contractin	g shoe brake	(4)	Hyd	raulic brake				
29.	Wha	at is the specific draf	t requirement	of tar	ndom	disc harrow ?				
	(1)	3.6 to 5.8 KN/cm ²		(2)	6 to	9 KN/cm ²				
	(3)	9 to 12 KN/cm ²		(4)	12 to	o 15 KN/cm ²				
30.	То у	vhat volume is a tan	k filled with li	iquid i	in com	npression spraye	rs ?			
	(1)	3/4 th volume (2	2) half capa	city	(3)	2/3 rd volume	(4)	top level		
31.	Spra patt	aying pattern of nozz ern.	zles used in hi	igh pr	essure	high volume sp	orayer	15 of		
	(1)	cone shape (2	2) round sha	ape	(3)	square shape	(4)	oval shape		
32.	Eng	ine fails to develop f	ull power beca	ause o	of :					
	(a) Air cleaner clogged (b)				r com	pression				
	(c)	Overheated engine	(d)	Cyli	inders	misfiring				
	(1)	only (c)		(2)	(a),	(b) and (c)				
	(3)	(a) and (c)		(4)	All	of these				
33.	Fill	in the blank correctly	<i>y</i> .							
		utch pedal moves fro distance is called "F								
	(1)	10 - 15 (2	2) 12 - 50		(3)	52 - 60	(4)	70 - 80		
34.	Wha	at is the grain damag	ge by thresher	due t	o ?					
	(1)	less clearance betw	veen cylinder	and c	oncav	e				
	(2) very dried crop									
	(3)	high speed rate								
	(4)	none of the above								
			700000				***************************************			

35.	Wha	at does the duster essential	ly consist of to	apply chemicals in dust form on the plants?
	(a)	Hopper, pressure gauge,	pump, hollo	w cone nozzle and strainer
	(b)	Hopper, agitator, feed co	ontrol, blower	and pump
	(c)	Hopper, agitator, feed co	ontrol, blower	and delivery nozzle
	(d)	Hopper, pump, agitator,	blower and f	lat fan nozzle
	Whi	ich of the above is/are cor	rect?	
	(1)	(a) and (b) only	(2)	(d) only
	(3)	(c) only	(4)	none of the above
36.	The	clearance between what is	s the clutch fro	ee play related with ?
	(1)	The release bearing and	clutch plates	
	(2)	The release bearing and	the sturt	
	(3)	The release bearing and	the spring	
	(4)	The release bearing and	the fingers	
37.		at are three main forces or lelement moving at a consta		that must be in equilibrium to which a tillage subjected ?
	(a)	Gravity forces, soil forces	s and forces a	cting between implement and prime mover
	(b)	Soil forces only		
	(c)	Gravity forces, soil forces	s and forces a	cting between implement and soil
	(d)	Soil forces and forces act	ing between i	mplement and soil
	Whi	ich of the above statements	s is/are correc	rt ?
	(1)	(b) only	(2)	(a) only
	(3)	(c) and (d) only	(4)	(b) and (c) only
38.	Whi	ich is a direct solid injection	n system of fu	el injection ?
	(1)	common rail system	(2)	air injection system
	(3)	fuel pressure system	(4)	no rail system
	OF 5	OD DOUGH WORK		

39.		at are the three typ planter ?	es de	pending upon tl	ne type	s of notches on	the seed	metering plates			
	(a)	cell drop, flat dr	op ai	nd hill drop							
	(b)	seed drop, cell d	•	•							
	(c)	seed drop, flat d	rop a	and cell drop							
	(d)	flat drop, edge d	lrop :	and hill drop							
	, ,	ich of the above st	•	•	ct ?						
	(1)	(a), (b) and (c) o	nly	(2)	(c) (only					
	(3)	(d) only		(4)	(b)	only					
40.	Wha	at is achieved by c	alibra	ation of the seed	drill ?						
	(a)	correct depth of	seed	in the soil							
	(b)	correct distance	betw	een the rows dr	illed						
	(c) correct seed rate per hectare of crop										
	(d) correct speed of sowing the seed										
	Which of the above statements is/are correct?										
	(1)	(a) and (d) only		(2)	(b)	only					
	(3)	(c) only		(4)	(d)	only					
41.		the basis of what seed ?	chara	cteristics a spec	fic gra	vity seed separ	ator is ı	ised for grading			
	(1)										
	(2)	same size and sa	ame s	specific gravity							
	(3)	different size an	d dif	ferent specific gr	avity						
	(4)	(2) same size and same specific gravity(3) different size and different specific gravity									
42.	Whe	ere does spoilage o	of gra	ins in summer c	onditio	ons take place ?					
	(1)	Top of the bin		(2)	Bott	tom of the bin					
	(3)	Side of the bin		(4)	All	of the above					
43.		at is the destruction	on of	all micro - orga	nisms	in food materia	l by the	rmal processing			
	(1)	Pasteurization	(2)	Sterilization	(3)	Blanching	(4)	Scalding			
SPA	CE F	OR ROUGH WO	RK								

44.	Wha rice	at is the characteristic o	of milled ri	ce obta	ined f	rom parboiled	paddy o	compared to raw	
	(1)	is whiter and contair	ns more vit	amin B	3,				
	(2)	require less cooking				vitamin B ₁			
	(3)	gives higher head yie							
	(4)	has more oil in bran	and contai	ns less	vitam	in B ₁			
45.	Wha	at sublimes (off) the wa	atervapour	from f	rozen	food ?			
	(1)	Contact drying		(2) Vacuum drying					
	(3)	Freeze drying		(4)	All	of the above			
46.		high capacities and fair erial handling device is				cal conveyanc	e of grain	ns, which type of	
	(1)	Belt conveyor		(2)	Buc	ket elevator			
	(3)	Screw conveyor		(4)	Pne	umatic convey	or		
47.	Wha	at is the difference betw	veen dry b	nperat	ture and wet b	oulb temp	perature called ?		
	(1)	Dry bulb depression		(2)	Wet	bulb depressi	on		
	(3)	Dew point depressio	n	(4)	Deg	ree of saturati	ion		
48.	Wha	at is the shape of perfo	rated deck	of spe	cific g	ravity separat	or?		
	(1)	Triangular (2)	Rectang	ular	(3)	Circular	(4)	Hexagonal	
49.	If th	ne fruits are having egg	g shape an	d are t	proad	at the stem er	nd, they	have	
	(1)	oblate (2)	oblong		(3)	ovate	(4)	obovate	
50.		at is the ratio of diame		largest	inscr	ribed circle to	diameter	r of the smallest	
	(1)	Roundness		(2)	Sph	ericity			
	(3)	Roundness ratio		(4)	Non	ne of the above	è		
51.		ich storage structure is I grains for a short per		ransit s	torage	e and serves t	he purpo	ose of storage of	
	(1)	Bunker storage		(2)	Buk	hari storage			
	(3)	Pusa bin storage		(4)	CAI	P storage			

52.	Wha	ıt can	achie	ve cor	ncentr	ation of h	ighly h	eat se	nsitive materia	al?	
	(1)	Vert	ical tu	ıbe ev	apora	itor	(2)	Hor	rizontal tube e	vaporato	r
	(3)	Falli	ng fili	n eva	porate	or	(4)	Plat	e evaporator		
53.	Wha	at indi	cates	the re	lative	proportio	ns of th	ne coa	rse, medium a	ınd fine p	particles ?
	(1)	Fine	ness n	nodul	us		(2)	Uni	formity index		
	(3)	Ave	rage p	articl	e size		(4)	Effe	ectiveness		
54.		nt is th be use		imun	n degr	ee of incli	nation f	rom l	norizontal upto	which a	screw conveyor
	(1)	5			(2)	10		(3)	15	(4)	20
55.	Wha		ne amo	ount c	of stea	m consum	ned to e	vapo	rate 1 kg of wa	ater from	food in a drum
	(1)	0.3 k	κg		(2)	1.3 kg		(3)	3.0 kg	(4)	None of these
56.	At v	At what speed do hammers rotate in						mer l	Mill ?		
	(1) 1200 to 7000 rpm				(2)	1500	0 to 4000 rpm				
	(3)	1000) to 15	500 rp	m		(4)	700	to 1000 rpm		
57.	In m	nilk pr	ocessi	ng, h	omoge	enizer is u	sed to r	educe	the fat globul	les size to):
	(1)	Less	than	2 mill	imetr	es	(2)	Less	s than 20 milli	metres	
	(3)	Less	than	2 mic	rons		(4)	Nor	ne of the above	2	
58.	Mate	ch the	follo	wing	:			_			
	(A)	Deep	p bin (desigr	ı		(i)	Moi	isture accumul	ation at	bottom
	(B)	Shal	low b	in des	sign		(ii)	Moi	isture accumul	ation at	top
	(C)	Win	ter mo	oistur	e mig	ration	(iii)	Ran	kines theory		
	(D)	Sum	mer r	noistu	ire mi	gration	(iv)	Jans	ssen's Equation	n	
		(A)	(B)	(C)	(D)						
	(1)	(iii)	(iv)	(i)	(ii)						
	(2)	(iii)	(iv)	(ii)	(i)						
	(3)	(iv)	(iii)	(i)	(ii)						
	(4)	(iv)	(iii)	(ii)	(i)						

59.	Com	nplete the senter	nce cor	rectly.									
	The	spiral separator	separa	ates the gra	ains as	per t	heir						
	(1)	Size	(2)	Shape		(3)	Roundness	(4)	Sphericity				
60.	Fill	in the blank cor	rectly.										
	The	Equilibrium m			is dete	rmine	ed at constant	relative	e humidity and				
	(1)	pressure			(2)	volu	ume						
	(3)	temperature			(4)	Non	ne of the above						
61.	In a as ?	body when stre	the rela	tionship known									
	(1)												
	(3)	Kelvin model			(4)	Max	well model						
62.		ch equation can ness modulus [F		te the aver	age pa	rticle	size, DP in mm	represe	nted in terms of				
	(1) $DP = 0.135 [1.366]^{F.M.}$ (2) $DP = 0.135 [3.166]$.M.					
	(3)	DP = 0.315 [1.	366] ^{F.M}	Ι.	(4)	DP=	= 0.315 [3.166] ^F	.М.					
63.		what relative l	bulb te	mperature and									
	(1)	1 percent			(2)	50 p	percent						
	(3)	100 percent			(4)	Diff	icult to predict						
64.	Wha	at is the number	of mol	ecular wei	ght of s	solute	expressed in kg	g in 1 m	³ of solution ?				
	(1)	Molar concen	tration		(2)	Mol	e fraction						
	(3)	Both (1) and ((2)		(4)	Nor	ne of the above						
65.		at will be the m s is 20% ?	oisture	content or	dry b	asis if	the moisture c	ontent (of paddy on wet				
	(1)	20%			(2)	2) more than 20%							
	(3)	less than 20%			(4)	non	e of the above						
			_										

66.	What is the removal of foreign and undesirable matter from the desired products called as ?									
	(1)	washing (2)	cleaning		(3)	sorting	(4)	scalping		
67.	M Mo	− Me − Me is known as _								
	whe	ere, $M = Moisture$	content, % (d	db)						
		Me = EMC, %	(db)							
		Mo=Initial M	oisture Cont	ent, %	(db)					
	(1)	Critical moisture co	ntent	(2)	Mois	sture ratio				
	(3)	Equilibrium moistur	re content	(4)	Dryi	ing rate				
68.	Con	aplete the sentence.								
		ream of product to be	dried is ver	y finel	ly aton	nized in a stre	am of ho	t air is a general		
	(1)	Vacuum dryer		(2)	Spra	y dryer				
	(3)	Tray dryer		(4)	All	of the above				
69.	Fill in the blank with the appropriate option.									
		omogenization proce ssure.	SS	_ of r	nilk in	creases with	increasin	g homogenizing		
	(1)	Viscosity		(2) Total soluble solids						
	(3)	Acidity		(4)	рН					
70.	Wha	at is the most common	nly used refr	igerati	ion sys	stem now a da	ays ?			
	(1)	Vapour compressio	n refrigeratio	on						
	(2)	Vapour absorption	refrigeration	L						
	(3)	Electrolux refrigera	tion							
	(4)	Steam jet refrigerati	ion							
71.	Wh	at reduces the size of	food grain ir	n an at	ttrition	mill ?				
	(1)	Impact and shear		(2)	(2) Crushing and shear					
	(3)	Impact and crushin	ıg	(4)	Imp	act only				

77. How does the screw conveyor generally move the grains?

(1) Vertically

(2) Horizontally

(3) Inclined

(4) None of the above

78. Fill in the blank with the correct option.

Centrifugal discharge is used extensively for handling small grains in _______.

(1) belt conveyor

(2) chain conveyor

(3) screw conveyor

(4) bucket elevator

SPACE FOR ROUGH WORK

A

79.	1 – F	$RH = e^{-CTM_e^n}$ what eq.	uatior	is this ?						
		ere, RH = Relative Hum								
		Absolute temperature,	-							
	Me=	=Equilibrium moisture	conte	nt, % (db) (C and n=constant					
	(1)	BET equation		(2)	Gibb's equation					
	(3)	Baker and Arkema ed	quatio	n (4)	Henderson's equation					
80.	Wha	at does the constant rate	e dryi	ng period o	depend on ?					
	(a)	Area exposed.								
	(b)	Difference in humidit	ty bet	ween air an	d wet surface.					
	(c)	Coefficient of mass tr	ansfe	r.						
	(d)	Velocity of drying air	·.							
	(1)	only (a) and (b)		(2)	only (a) and (c)					
	(3)	only (d)		(4)	(a), (b), (c) and (d)					
81.	The Khadi Village Industries Commission (KVIC) biogas model is of which type?									
	(1)	FRP biogas plant		(2)	Floating gas holder					
	(3)	Fixed dome digester		(4)	Mobile biogas plant					
82.	Which instrument is used to measure the direct and diffused radiation in terms of energy per unit time per unit area on horizontal surface?									
	(1)	Thermometer		(2)	Pyranometer					
	(3)	Anemometer		(4)	Sun shine recorder					
83.	Froi	m what can biogas be p	orodu	red ?						
	(a)	Cow dung	(b)	Poultry d	roppings					
	(c)	Plant garbage	(d)	Flesh of c	arcasses					
	(1)	(a) and (b)		(2)	(a) only					
	(3)	(a), (b) and (c)		(4)	all of these					

84.	Fill in the blank correctly.												
	Step	o-up transforme	er receive	es energy a	t one v	oltage	and delivers i	t at a		voltage.			
	(1)	Lower	(2)	Higher		(3)	Same	(4)	Zero				
85.	Wha	at is a universa	l motor	?						/ i.			
	(1)	is available u	niversall	ly									
	(2)	can be mark	eted inte	rnationally	7								
	(3)	can be opera	ted eithe	r on dc or	ac sup	ply							
	(4)	runs at dang	erously l	nigh speed	on no	load							
86.		What are the steps as per generally recognized strategy for site selection of wind minstallations?											
	(a) Survey of historical wind data is done.												
	(b) Contour maps of terrain and wind are consulted.												
	(c)	(c) Potential sites are instrumented for approximately one year.											
	(d) Optimal site is chosen.												
	(1)	(a), (b) and (d)		(2)	(a) a	and (d)						
	(3)	(a), (c) and (d	d)		(4)	(a),	(b), (c) and (d))					
87.	How many fold increase in the available wind power will there be, if the diameter of rotor of horizontal axis wind mill is doubled?												
	(1)	2	(2)	4		(3)	6	(4)	8				
88.	Con	nplete the sent	ence.										
	The	surface azimu	th angle	(γ) varies	from								
	(1)	0° to 180°	(2)	180° to	270°	(3)	180° to 18	0° (4)	-180	° to 360°			
89.	Wha	at is the calorifi	ic value	of biogas in	n kcal j	per cu	bic meter ?						
	(1)	3000	(2)	3700		(3)	4700	(4)	5500				
90.	Wha	at is the range	of voltag	ge applied t	to the e	electri	cal fence ?						
	(1)	6000 to 15000			(2)) to 15000 volt	s contin	uous				
	(3)	1000 to 6000	•		(4)	1000	to 6000 volts	continu	ous				
			_	_									

91.	What for is a fuse provided for electric circuit?												
	(1)	safe - guarding	g the c	rircuit agains	st hear	vy cur	rent						
	(2)	decreasing cur	rent fl	owing in a c	circuit								
	(3)	increasing cur	rent flo	owing in a c	ircuit								
	(4)	decreasing por	wer co	nsumption i	n a ci	rcuit							
92.	Fill	in the blank.											
	In fi	xed dome type	biogas	plant, gas a	vailal	oility is	s at _		pres	sure	e.		
	(1)	Atmospheric	(2)	Constant		(3)	Vari	able	(4	1)	None of these		
93.	Whi	ch of the follow	ing is	not a part of	flat p	olate sc	olar co	ollecto	rs ?				
	(1)	Transparent co	over		(2)	Absc	orber	plate					
	(3)	Insulation			(4)	Helio	ostat						
94.	incr	a is having abou eased from 80% of 1000 hrs ?											
	(1)	2.96 billion kV	Vh		(2)	4.62	billio	n kWl	ı				
	(3)	5.14 billion kV	Vh		(4)	0.9 b	illion	kWh					
95.	Win	d mill operated	piston	pump is sui	itable	for wł	nich f	orm of	firrigatio	on ?			
	(a)	well (b)	bor	e hole	(c)	dam	-	(d)	river				
	(1)	(a) and (b)			(2)	(c) a	nd (d)					
	(3)	(a), (c) and (d))		(4)	all th	ne abo	ove					
96.	Fill	in the blanks ap	propri	ately.									
		d speed that close to th		_	it the	height	of 10) m w	as found	to	be		
	(1)	increase ; 5 - 1	0% hi	gher	(2)	decr	ease ;	5 - 10)% lower				
	(3)	increase; 20 -	25% h	igher	(4)	decr	ease ;	20 - 2	25% lowe	er			

17

97.	Fill:	in the blank corr	ectly.										
		hane bacteria w duction.	ork be	st at a temp	eratu	re rar	ige of	for c	optimum biogas				
	(1)	10 - 20°C	(2)	35 - 38°C		(3)	5 - 15°C	(4)	40 - 50°C				
98.	Whi	ich of the follow	ing are	the direct o	or ind	irect a	pplications of so	olar ene	rgy ?				
	(a)	Solar water he	eating	(b)	Spac	ce coo	ling						
	(c)	Wind energy		(d)	Sola	r cool	king						
	(1)	(a) only			(2)	(a) a	and (d)						
	(3)	(a), (c) and (d)	١		(4)	all o	f above						
99.	Wha	at is the major of	ostacle	to increase	the us	se of s	olar irrigation sy	ystems	?				
	(1)	It cannot be or	erated	in rainy se	ason								
	(2)	Relatively high	n capita	al cost									
	(3) Relatively high operational cost												
	(4)	Pumping may	be inte	ermittent									
100.		at is the relative r ular, since opera	_	ment of the	Savon	ius ro	tor machine due	to whi	ch it has become				
	(1)	high velocity v	vind		(2)	low	velocity wind						
	(3)	low maintenar			(4)	mod	lerate velocity w	vind					
101.	Wha	at type of windo	ws are	provided o	n the	slopin	ng surface of a p	itched :	roof ?				
	(1)	Clerestorey	(2)	Bay		(3)	Lantern	(4)	Sky lights				
102.	Fill	in the blank witl	h a cor	rect option.									
	A k	ing post truss is	suitabl	e for roofs	of spa	n vary	ying from						
	(1)	2 m to 5 m	(2)	5 m to 8 n	n	(3)	8 m to 11 m	(4)	12 m to 15 m				
	T 4 77 .	ch flooring mate	erial is	used in the	parqu	et floo	oring?						
103.	Whi	cit itooinig iitate											
103.	(1)	Magnesite Magnesite	(2)	Asphalt		(3)	Timber	(4)	Plastic				
	(1) Hov	O	ge of p	hotosynthet		active	e radiation is tra						

105.	In gr	reen house cultiv	ation,	temperatu	re at v	vhich	plant can grov	v depend	ls upon ?
	(1)	Species			(2)	Rad	iant energy		
	(3)	Carbon dioxide	conce	entration	(4)	All	of these		
106.	Wha	t is the solid gro	and o	n which the	e foun	datior	ns rest called ?		
	(1)	Footing			(2)	Plin	th		
	(3)	Foundation bed			(4)	Supe	er - structure		
107.	Fill i	n the blank with	one o	f the optior	ns give	n belo	ow.		
	The	doors should pre mm from		•	d near	the c	orner of a roo	m, at a d	istance of about
	(1)	300	(2)	250		(3)	200	(4)	150
108.	Wha	it tests the sound	ness o	of cement?					
	(1)	Air permeability	y metl	nod	(2)	Le -	chatelier meth	od	
	(3)	Vicat's apparat	us		(4)	All	of the above		
109.	In w	hich case is the s	ervice	life of gree	en hou	se cov	vering material	highest	?
	(1)	Acrylic sheet							
	(2)	Polycarbonate s	sheet						
	(3)	Fibre glass reinf	orced	plastic par	nels				
	(4)	Polyethylene sh	eet						
110.	Fill i	in the blank with	the a	ppropriate	option	ı.			
		crushing stre		of a goo	d str	uctur	al stone sho	ould be	greater than
	(1)	100	(2)	75		(3)	50	(4)	25
111.		at is the minimum pump and the fl				ween t	the bottom of a	verticall	y driven turbine
	(1)	1 m	(2)	1.5 m		(3)	2 m	(4)	2.5 m
112.		at is the recomme	nded	safe land s	lope ir	n heav	y (clay) soils f	or land l	evelling to have
	ettic	ient irrigation?							

113.	If H is the head of water above the V - notch, then the rate of flow through V - notch varies as :												
	(1)	Н	. (2)	\sqrt{H}		(3)	$H^{3/2}$	(4)	H ^{5/2}				
114.		t should be the			charge	of 10	HP pump w	orking at	the efficiency of				
	(1)	10 lit/sec	(2)	12. 50 lit	/sec	(3)	7.50 lit/sec	(4)	15 lit/sec				
115.		formula Q=0. er free flow cor		-			_	ge through	n circular orifice				
	(1)	Vertical dista	nce betv	veen botto	om of cl	nanne	l and top of t	floor.					
	(2)	Difference be	tween u	pstream a	and dov	vnstre	eam water lev	vel.					
	(3)	Vertical distar	nce betv	veen botto	m of o	rifice a	and top of flo	ow.					
	(4)	Vertical dista	nce betv	v ee n centr	e of ori	ifice a	nd top of flo	W.					
116.		t is the most a l and medium			anically	opera	ated equipme	ent for the	fine grading of				
	(1)	bull dozer			(2)	two	wheeled aut	omatic lev	veller				
	(3)	carrier type s	crapper		(4)	woo	oden float						
117.	Wha	t must be the c	lepth of	the tile lin	nes for	the us	ual channels	serving as	outlets ?				
	(1)	0.60 m or less			(2)	alw	ays 0.90 m						
	(3)	1.2 m or more	9		(4)	3.0 1	m or more						
118.	Wha	t is the pressur	e drop	usually all	lowed i	n a m	edia filter ?						
	(1)	1 m	(2)	2 m		(3)	3 m	(4)	4 m				
119.	The	pressure head :	in a spri	inkler syst	em is c	onver	ted into veloc	city head a					
	(1)	the sprinkler	head		(2)	the	sprinkler jet						
	(3)	the nozzle			(4)	the	riser						
120.		are the consta fers classified a	-	owing well	ls due	to hig	h hydrostatic	pressure	within confined				
	(1)	Pearched wel	ls		(2)	Piez	zometric well	s					
	(3)	Sinking wells			(4)	Arte	esian wells						

20

121.		nage channel t is the draina	C.7				res of water per second and drains 360 hectares, and?				
	(1)	2.4 mm	(2)	4.9	mm		(3)	9.9 mm	(4)	5.9 mm	
122.	Wha		ormation	leve	of up	per ai	nd low	ver grid from	centroid	in the following	
	(i)	centroid = 10	00 m								
	(ii)	slope = 0.2%									
	(iii)	Grid distanc	e = 30 m								
	(1)	100.30 m an	d 99.70 n	n		(2)	100.	60 m and 99.	94 m		
	(3)	101.20 m an	d 98.80 n	n		(4)	103.0	00 m and 97.	00 m		
123.		at is the metho le the field to			ing d€	esign ;	restric	ted to those f	ields whei	re it is feasible to	
	(1)	plane metho	od			(2)	prof	ile method			
	(3)	plan inspect	ion meth	od		(4)	cont	our adjustme	ent metho	d	
124.	Whi	ch equation g	ives the le	eachi	ng req	uirem	ent fo	r the salt affe	cted soil ?	,	
	(1)	Dd Di	(2)	EC EC	d ïi		(3)	Di Dd	(4)	ECi ECe	
 125.		at is the line w pipe with res				-			m head o	f a flowing fluid	
	(1)	total energy	line			(2)	datu	ım line			
	(3)	hydraulic gi	adient lir	ne		(4)	refei	rence line			
126.		at is the ratio bretical velocit				elocity	of a j	jet of liquid a	t vena - co	ontracta and the	
	(1)	coefficient o	f friction			(2)	coef	ficient of disc	harge		
	(3)	coefficient c	f contract	tion		(4)	coef	ficient of velo	ocity		
127.	ider		rrigated a			~		-	0.0	oup on problem sources Govt. of	
	(1)	Water table	touching	the l	and si	urface.					
	(2)	Water table	between	2 to 3	3 m fro	om lar	nd sur	face.			
	(3)	Water table	below 3.0) m f	rom la	ind su	rface.				
	(4)	Water table	within 2.	0 m 1	from la	and su	ırface.				

- 128. What is generally the diameter of observation wells for pumping tests of wells?
 - less than 2.5 m (1)

ranging between 2.5 to 5 cm (2)

more than 5 cm (3)

- about 30 cm (4)
- **129.** What is the relationship between duty (D), delta (Δ) and base period (B) ?
 - (1) $\Delta = \frac{8.64 \text{ B}}{D}$ m, if B in days and D in ha
 - (2) $\Delta = \frac{8.64 \text{ D}}{\text{R}}$ m, if B in days and D in ha
 - $\Delta = \frac{27.78}{T}$ (B × D) m, if B in days, D in ha and T pump working hrs per day
 - $\Delta = \frac{D \times B}{8.64 \times 2h \times 3600}$ if B in days, D in ha
- **130.** Complete the following sentence meaningfully.

Flow through channel is said to be steady, when velocity of flow is:

- (1)constant at point over length
- (2)constant at point over time
- (3)varying at point over length
- (4)varying at point over time
- 131. What is the condition for the trapezoidal channel section to be most economical? (m = hydraulic mean depth and d = depth of fluid)
 - $(1) m = \frac{d}{2}$
- (2) $d = \frac{m}{2}$ (3) $m = \frac{d}{4}$
- (4) $d = \frac{m}{4}$
- 132. Where the gravel filter and the base material are more or less uniformly graded for gravel envelope, without a lack or excess of certain particle sizes, a filter stability ratio is generally safe, when it is?
 - (1)less than 5
- (2)more than 5
- (3) more than 7
- (4) none of these
- 133. Which of the following components of canal system is supposed to be maintained by farmer?
 - Distributory
- (2)Water course
- Minor (3)
- Branch canal (4)

- 134. What for are propeller pumps specifically adopted?
 - low head and high discharge operations
 - (2)high head and low discharge operations
 - high head and high discharge operations (3)
 - (4)low head and low discharge operations
- 135. At what flexibility the canal outlet is known to be hyper proportional?
 - (1)equal to unity

- (2)less than unity
- greater than unity (3)
- (4)none of these
- 136. What is the structure known as when the HFL of the drain is sufficiently below the bottom of the canal so that the drainage water flows freely under gravity?
 - syphon aqueduct
- canal syphon (2)

(3)aqueduct

- super passage (4)
- **137.** What does duty of any crop signify?
 - it is a discharge in cumec released over base period. (1)
 - it is a period in days for which one cumec discharge is released. (2)
 - it is an area in hectares irrigated by one cumec discharge released continuously for base period for that particular crop.
 - (4)it is discharge in cumec required to be released for 100 ha area for that particular
- **138.** What is the suction limit of a centrifugal pump?
- 21 m
- 6 m
- (4) 35 m
- 139. What are the characteristics of shallow tube wells?
 - high capacity and depth more than 35 m
 - low capacity and depth less than 35 m (2)
 - high capacity and depth between 60 300 m (3)
 - low capacity and depth between 60 300 m (4)
- 140. Which one of the following equations is used to determine the velocity of flow V, where L=distance, m; K=hydraulic conductivity, m/day; $(h_1 - h_2)$ =elevation difference in water table, m?

(1)
$$V = \frac{K(h_1 - h_2)}{L}$$
, m/day (2) $V = \frac{K.L}{(h_1 - h_2)}$, m/day

(2)
$$V = \frac{K.L}{(h_1 - h_2)}$$
, m/day

(3)
$$V = \frac{L(h_1 - h_2)}{K}$$
, m/day (4) $V = \frac{K(h_1 - h_2)}{L}$, m/sec

(4)
$$V = \frac{K(h_1 - h_2)}{L}$$
, m/sec

141.	Wha	at is the stream which becomes di	ry soon	after the end of rainstorm referred as ?
	(1)	intermittent stream	(2)	perennial stream
	(3)	ephemeral stream	(4)	influent stream
142.	Whi	0	mic floo	od control structure in the earthen dike like
	(1)	Retarding basins	(2)	Close conduits
	(3)	Retaining walls	(4)	Levees
143.		at is the remedial measure of c	ontroll	ling reservoir sedimentation that becomes
	(1)	removal of sediment deposit	(2)	control of sediment inflow
	(3)	design of reservoir	(4)	watershed erosion control
144.	Whi	ich one is the common suspended	l load s	ampler ?
	(1)	Pumping sampler	(2)	Core sampler
	(3)	Width sampler	(4)	Open sampler
145.		v is the weighing factor defined rage precipitation over an area?	as, in T	Thissen polygon method of determination of
	(1)	Polygon area Total area	(2)	Polygon area×Total area
		Total area		Point rainfall
	(3)	Polygon area	(4)	Average rainfall
146.	Wha	at is the capacity of each compart	ment o	of tipping bucket type raingauge ?
	(1)	0.20 mm rainfall depth	(2)	0.25 mm rainfall depth
	(3)	0.30 mm rainfall depth	(4)	0.50 mm rainfall depth
 147.		3:1 and 4:1 side slopes towards vided to earthen dam for which ty	-	eam and downstream, respectively should be soils ?
	(1)	Well graded soil	(2)	Average quality fill material
	(3)	Relatively coarse fill material	(4)	Coherent soil

148.			nge of	f moderate intens	sity based on the falling rate of rainfall?					
	(1)	2.5 mm/h		(2)		to 7.5 mm/h				
	(3)	7.5 to 15.0 mn	ı/h	(4)	15.0	to 22.0 mm/h				
149.		en isolated bodies ace, which phase		sistant rock from	promi	nent hills are fou	nd abo	ove the subdued		
	(1)	Inequilibrium	(2)	Equilibrium	(3)	Hypsometric	(4)	Monadnock		
150.		at is the value of l	oifurca	ation ratio if, the r	numbe	er of streams of or	der u	are 15 and order		
	(1)	0.27	(2)	0.72	(3)	0.75	(4)	3.75		
151.	In w	hat form the rel	ations	hip between rains	fall an	d runoff for larg	e catch	nments exists ?		
	(1)	linear		(2)	loga	arithmic				
	(3)	exponential		(4)	non	e of the above				
152.		ch shape of grass easy to construc Triangular		aterway amongst Trapezoidal	the fo	llowing is hydrol Half - circle	logicall (4)	ly more efficient Parabolic		
153.	In w	hich soils will th	e soil	erosion be highes	t ?			A CONTRACT OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO		
	(1)	soil under culti	vated	crop (2)	soil	surface covered	by pla	nt canopy		
	(3)	soil surface und	der gra	ass cover (4)	soil	surface under for	rest co	ver		
154.	Wha		· lines	joining all prints	in a	basin by some k	ey tin	ne elements in a		
		m:								
	(1)	Isobaths	(2)	Isobars	(3)	Isochrones	(4)	Isohyetes		
 155.	(1)	Isobaths	recom	Isobars mendation, what				All the second states and the second states are second states as the second states are second		
 155.	(1)	Isobaths er the FAO 1965	recom					All the second state of th		
	As p for s (1)	Isobaths oer the FAO 1965 sandy loam soil ? 6 m ersheds A and E	recom (2) 3 have	mendation, what	should (3) A has	d be the width fo	r wind	- strip cropping 105 m		
	As p for s (1)	Isobaths oer the FAO 1965 sandy loam soil ? 6 m ersheds A and E	recom (2) 3 have	85 m same area, but	should (3) A has	d be the width fo	r wind	- strip cropping 105 m		

157.	Whe (1) (3)	en will the wid when batter when batter	slope is (0.5 : 1	(2)	•					
158.	Wha	at should be th 0.25 m/s	e non - e		-	or san	-	(4)	1.0 m/s		
159.	that	the terrace sh	ould carr		ff in o	nly on	e direction.	s terrace l	ength, provided		
	(1) (3)	400 to 500 m 0.8 to 1 km	1		(2) (4)		to 800 m to 400 ft				
160.		at is the value 5 m/m²?	of consta	nt of chan	nel ma	intena	ance if, the dra	ainage de	nsity of basin is		
	(1)	100 m	(2)	200 m		(3)	300 m	(4)	400 m		
161.		in the blank w slope in conto bund height slope of seep	our and §		•	esigne bund	d on the basis d base width e of repose of				
162.	Why (1) (2) (3) (4)	is soil loss es Its validity is It is universa It accounts for	s more ally adop or all par	ted ameters af				oss equation	on' ?		
163.		at is the erodib 800 units resp	-		djusted	soil l	oss and R, fac	tor becon	ne 80 tonnes/ha		
	(1)	1.0	(2)	1.10		(3)	0.10	(4)	10.0		
164.	For (1)	a storm of any zero	given d	uration wit	th large	e retur	rn period, wha	at will its	intensity be ?		
165.	Wha	at is the horizo	ntal dist	ance betwe	en the	grade	ed terraces, if	the land	slope is 5% ?		

166.	What is	the	value	of mean	areal	rainfall	using	Theissen	polygon	method	?
------	---------	-----	-------	---------	-------	----------	-------	----------	---------	--------	---

Station	A	В	С
Rainfall (cm)	10	15	20
Polygon area (km²)	50	100	50

- (1) 13 cm
- (2) 14 cm
- (3) 15 cm
- (4) 16 cm

167.	What can effectively	protect a	stream	bank	when	a s	stream	takes	sharp	bend	and	bed
	scour is not deep and	vertical?										

- (1) Brush wood rollers
- (2) Brush wood edging

(3) Spur dikes

(4) Wooden Jack series

168.	The maximum slope length of 35 m is restricted in case of contour far	ming for the land
	having how much percent slope?	

- (1) 9 to 12
- (2) 13 to 16
- (3) 6 to 8
- (4) 3 to 5

169. As per the WMO recommendations, in flat regions of temperate, mediterranean and tropical zones, in ideal conditions one raingauge should cover how much of an area?

(1) 900 to 3000 ha

- (2) $600 \text{ to } 900 \text{ km}^2$
- (3) 100 to 250 miles
- (4) $1500 \text{ to } 10,000 \text{ m}^2$

170. When the particle Reynold number is more than 400, what will be the value of shield's Entrainment function ?

- (1) 0.056
- (2) 0.065
- (3) 0.56
- (4) 0.65

171. In case of loamy soils for graded bunding, what should be the gradient of channel?

- (1) 0.1 to 0.2%
- (2) 0.5%
- (3) 0.3 to 0.4%
- (4) 0.5 to 0.7%

172. Which is the more effective retard of installation to control the stream bank erosion, where the stream bank currents are not swift?

- (1) Masonry jack
- (2) Metal jack
- (3) RCC jack
- (4) Wooden jack

173. How is the runoff, classified on the basis of time lag between precipitation and runoff?

- (1) direct runoff and indirect runoff
- (2) interflow and channel flow
- (3) surface flow and base flow
- (4) quick return flow and prompt flow

	Wha	at is the interfa	ce betwe	en two dis	tinct a	ir mas	sses of the wea	ther syst	tem called ?		
	(1)	Front	(2)	Glaze		(3)	Snow	(4)	Cyclone		
175.		rough a basin a					of 15 ha - an is	generate	d. What will be		
	(1)	4.29 mm	(2)	4.29 cm		(3)	6.0 mm	(4)	6.0 cm		
176.		How much losses take place in water conveyance through unlined channels from source to field, of the total water lifted from the pond ?									
	(1)	15%	(2)	20 to 50%)	(3)	50 to 60%	(4)	10 to 20%		
177.	Whi	ch principle is	used in	DU Boys fo	rmula	for e	stimation of be	d load ?			
	(1) Theory of tractive force						form size of sec				
	(3)	Effect of grain	n diame	ter	(4)	Exp	erimental data				
 178.	Corr	nplete the follo	wing sei	ntence mea	ningfu	llv.			1		
1,0,		Complete the following sentence meaningfully. Trenches for hill slopes are designed on the basis of:									
	(1)	land slope			(2)			erosive	runoff velocity		
	(3)	slope length	only		(4)		off volume to b		,		
179.		at is the value of th of drainage 0.01		. ,	f the d	lrainag	ge area is 50 sq	uare kilo	ometres with the		
180.	Which type of drains are provided at the upper part of the cultivated area to intercept the uncontrolled flow of water from the upper catchment and divert it laterally safe into a natural or protected waterways?										
	natu	ıral or protecte	d water	ways ?							
	(1)	ıral or protecte Diversion	d water (2)	ways ? Mole		(3)	Vertical	(4)	Metal		
 181.	(1)	Diversion	(2)	Mole	is sui						
181.	(1)	-	(2) ng whic	Mole h condition	is sui						
 181.	(1) Amo (1)	Diversion ong the followi	(2) ng whic	Mole h condition percent							
181.	(1)	Diversion ong the followi	(2) ng whic ess than reater th	Mole h condition 4 percent nan 4 perce	nt						
181.	(1) Amo (1) (2)	Diversion ong the followi Land slope le	(2) ng whicess than reater the	Mole h condition 4 percent nan 4 perce	nt						
	(1) Amo (1) (2) (3) (4)	Diversion ong the followi Land slope le Land slope g Land slope b	(2) ng whices than reater the etween the above	Mole h condition 4 percent nan 4 perce 5 to 8 perce	nt ent	table :	for dug out typ				

183.		it is the kinetic e 203.10 units	nergy (or raintail to			30 units	111 :			
	(1)	203.10 units			(2) (4)		30 units				
	(3)	201.30 units				<u> </u>					
184.	What are the special constructional features of a detention reservoir for flood control in downstream area ?										
	(1)	1) Provided with adjustable gates and valves.									
	(2)	2) Provided with ungated outlet regulating outflow automatically.									
	(3)	Provided with	gates t	o regulate f	lood v	volum	e.				
	(4)	Provided with	storage	e to permar	nently	deten	d flood volum	e.			
 185.	Whi	ch sentence is co	rrectly	related to	Unive	rsal So	oil Loss Equation	on ?			
	(1)	It computes the	e sedin	nent deposi	tion						
	(2)	It is not an em	pirical	equation							
	(3)	It computes the	e gully	erosion							
	(4)	It computes the	e avera	ige annual s	soil lo	SS					
 186.	Which one of the following is selected on the basis of cost benefit ratio?										
	(1)	Design flood			(2)	Peal	< flood				
	(3)	Annual flood			(4)	Ord	inary flood				
 187.	How many rows of wooden pole spurs are constructed along the eroded portion of stream bank to control stream bank erosion?										
	(1)	Two	(2)	Three		(3)	Four	(4)	Five		
188.	What is the general relationship that exists between rainfall intensity (i), duration (t) and return period (T)?										
	(1)	iαt/T	(2)	iαt.T		(3)	iαT/t	(4)	i α 1/t.T		
189.	The condition of the site for farm pond, where the largest storage volume can be obtained with least amount of earth work will be fulfilled where,										
189.				work will	be ful	imeu	WIRCIC,				
189.			f earth	work will (b)			es are relatively	steep			
189.	with	n least amount o	f earth		Side	slope		steep			

190.		Erosion causing annual soil loss from 0.05 to 0.5 mm depth is categorized as which type of erosion ?										
	(1)	Harmful	(2)	Weak		(3)	Medium	(4)	Serious			
191.	State the process in which part of rainfall first leaches into the soil and moves laterally without joining the water table, streams, rivers or oceans?											
	(1)	Surface runo	off		(2)	Subs	surface runoff					
	(3)	Total runoff			(4)	Base	flow					
192.	Com	plete the follo	owing sta	itement.								
		effectiveness o loss equation i		farming in	erosic	n cont	rol is incorporat	ted in fa	ctor of universal			
	(1)	P	(2)	С		(3)	K	(4)	LS			
193.	What has the lowest runoff coefficient among various categories of following land use?											
	(1)	Agricultural	lands		(2)	Fore	st lands					
	(3)	Barren lands	;		(4)	Gras	ss lands					
194.	What terminology is referred as the product of relief and drainage density?											
	(1) Reynold number					Frou	ıd number					
	(3)	Ruggedness	number		(4)	Geo	metric number					
195.	What is the recurrence interval of rainfall magnitude whose probability of event is 50 percent ?											
	(1)	1 year	(2)	2 years		(3)	25 years	(4)	50 years			
196.	Which type of bunds are constructed between two contour bunds, so as to limit a horizontal spacing to the maximum required ?											
	(1)	Side	(2)	Marginal	l	(3)	Lateral	(4)	Supplemental			
 197.	Wha	nt is the suitab	le grade	for graded	bundi	ng in	areas of mediur	n and h	eavy rainfall?			
	(1)	< 0.1%	(2)	0.2 to 0.3	3%	(3)	0.3 to 0.5%	(4)	0.5 to 1.0%			
CDA	CE E	OR ROUGH	WORK									

198.		unit hydrograp: watershed ?	h metho	od to compi	e direct runoff is limited to how much area of					
	(1)	5000 km^2	(2)	4000 ha		(3)	2500 acre	(4)	10,000 m ²	
199.	State in which condition V - shape gullies are developed ?									
	(1) In alluvial plains					Easily erodible soil				
	(3) Subsoils are loose					Subsoils are tough to resist the runoff				
200.	For effective functioning of water harvesting structure, how much storage or water spread area should there be ?									
	(1)	< 10 ha			(2)	25 t	o 35% of catch	ment ar	ea	
	(3) 20% of catchment area				(4)	$1/8^{t}$	h to $1/5^{th}$ of ca	atchmen	t area	

- o 0 o -

SPACE FOR ROUGH WORK

SEA

सूचना — (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपित्रकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपित्रकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

Q.No. 201. The Catch varies inversely with the size of the:

(1) nozzle

(2) droplet

(3) obstruction

(4) sprayer

ह्या प्रश्नाचे योग्य उत्तर ''(3) obstruction" हे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल, आता खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''③'' च्या वर्तुळास खालीलप्रमाणे पूर्णपणे छायांकित करून दाखिवणे आवश्यक आहे.

प्र. क्र. 201. (1) (2)

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.