A

वेळ : 2 (दोन) तास

2013

प्रश्नपुस्तिका क्रमांक BOOKLET NO.

प्रश्नपुस्तिका स्थापत्य अभियांत्रिकी

एकूण प्रश्न : 100

CODE: KO2

पेपर-II

एकूण गुण: 200

शेवटचा अंक

सूचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- न विसरता बॉलपेनने लिहावा. केंद्राची संकेताक्षरे

 वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमृद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपित्रकेवरील सूचनेप्रमाणे तुमच्या उत्तरपित्रकेवर नमूद करावा. अशा प्रकारे उत्तरपित्रकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण **एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे**. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार पर्यायापैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

Λ
1

3

KO₂

1. In the case of which natural feature do the two contour lines inters

- (1)hill
- valley (2)
- saddle (3)
- vertical clift (4)

2. When I. denotes the Latitudes and D denotes the departures, then the closing error is given by:

- (1) $\frac{\Sigma L + \Sigma D}{2N}$ (2) $\frac{\Sigma L}{N} + \frac{\Sigma D}{N}$ (3) $\sqrt{\Sigma L + \Sigma D}$
- (4) $\sqrt{\Sigma L^2 + \Sigma D^2}$

3. The line through a point in which plane passing through that point and the north and south poles, intersects with the surface of the earth is known as:

(1)True Bearing

- True Meridian (2)
- Arbitrary meridian
- None of the above (4)

- (1) 7
- (2)
- (3)

In plane table survey the method used for locating points is: 5.

Resection

Radiation

Intersection

Either Radiation or Intersection (4)

Which of the following statements are correct? 6.

- An echo sounder is also called as a fathometer.
- (b) A self-registering gauge should be installed in open.
- (c) An echo - sounder can be used in strong currents.

Answer options:

(a), (b) and (c) (1)

(a) and (c)

(3)(a) and (b) (4) (b) and (c)

7.	Overturning of a vehicle on a curve can					in be avoided by using :				
	(1) Transition curve					Vertical curve				
	(3)	Reverse curve			(4)	Con	npound curve			
8.	Leas	st count of a theoc	dolite	is:						_
	(1)	1 minute	(2)	30 minute	es	(3)	1 degree	(4)	20 seconds	
9.	If the magnetic bearing of a line is 54° bearing of line will be :					and m	nagnetic declin	ation is !	5°30' E, the tru	16
	(1)	61°	(2)	59°		(3)	49°	(4)	60°	
10.		process of determ		•	ence (of elev	vations of stati	ons from	vertical angle	25
	(1)	Trigonometrical	level	ling		(2)	Geodetic sur	veying		
	(3)	Field astronomy	•			(4)	Topographic	surveyir	ng	
11.	The method of tacheometric surveying in which stadia hairs are not used and the readings are taken against the horizontal cross hair with measurement of vertical angle twice for one single observation is known as:									
	(1)	Substance method	od			(2)	Tangential sy	ystem		
	(3)	Fixed hair meth	od			(4)	None of the	above		
12.	Arithmatic check in levelling indicates :									
	(1)	Accuracy of field	d wo	rk	(2)	Correctness of computations			ns	
	(3)	Instrumental err	or		(4)	Erro	r in staff readi	ngs		

13.	In Global Positioning System (G.P.S.) there are more than 24 Nos. of G.P.S. Satellit moving in circular orbits around the earth with the inclination of:								. Satellites		
	(1)	65°	(2)	35°		(3)	45°	(4)	55°		
14.	For building project estimates which method is generally used in PWD?										
	(1)	Long wall and	l Short	wall metho	od	(2)	Centre line	method			
	(3)	Crossing meth	od			(4)	None of the	e above			
15.	90 y	uilding was cons ears. What is the p value		, ,	_						
	(1)	₹ 40,000	(2)	₹ 38,888		(3)	₹ 45,000	(4)	₹ 35	,000	
16.	The	quantity of arch	masor	nry work is	calcu	lated b	by the relation	n :			
	(1)	(1) Span of arch \times breadth of wall \times thickness of arch									
	(2)	(2) (Span of arch + 2 \times thickness of arch) \times breadth of wall									
	(3)	(Span of arch	+ 2 ×	breadth of	wall)	× thi	ckness of arc	h			
	(4)	(4) Mean length of arch \times breadth of wall \times thickness of arch									
17.		The work output of a mason for brick work in cement mortar for foundation work is roughly expected to be :									
	(1)	0.5 cu.m. per o	lay		(2)	1.25	cu.m per da	y			
	(3)	2.00 cu.m. per	day		(4)	5.00	cu.m. per da	y			

18. Security deposit deducted at 5% from contractors	bills is:	:
---	-----------	---

- (1) refunded when the contractor completes the work.
- (2) refunded even before the completion of the work provided good progress has been established
- (3) retained till the expected life of structure and spent for maintenance
- (4) refunded when the defect liability period of six months or one monsoon whichever is later is over.

19. Which of the following documents will not be required for drafting the tender notice?

- (1) Nature of work and its location
- (2) Estimated cost of the work
- (3) Schedule A of the work
- (4) Mode of submitting tender

20. The rate of a particular item of work depends on :

- (a) Specifications of works and materials.
- (b) Quantities of materials and their rates.
- (c) Location of the site of work.
- (d) Profit and overhead expenses of contractor.

Answer options:

(1) (a) and (b)

(2) only (d)

(3) (a), (c) and (d)

(4) (a), (b), (c) and (d)

21. The brick work is not measured in m³ in case of :

- (1) One or more than one brick thick wall.
- (2) Half brick thick wall.
- (3) Brick work in arches.
- (4) Reinforced brick work.

A			7		KO2					
22.	The	The method used for valuation of building is :								
	(1)	Rental method of valuation	(2)	Depreciation method of valuation						
	(3)	Valuation based upon cost	(4)	Any of the above						
23.	Whi	ich of the following represents the	requi	rements of valid contract :						
	(a)	It must be in writing								
	(b) Can be enforced in court of law									
(c) Parties should give the consent for agreement										
	(d)	Parties concerned must be comp	petent							
	Ans	wer options :								
	(1)	(a) and (b) of the above	(2)	(a) and (c) of the above						
	(3)	(c) and (d) of the above	(4)	(a), (b), (c) and (d) of the above						
24.	soli	1 0 1		th the help of a pycnometer if, weilth the help of a pycnometer if, weilth the left of pycnometer if, weight of pycnomete	•					
	(1)	2.40 (2) 2.50		(3) 2.60 (4) 2.70						

25. The active earth pressure for 10 m high retaining wall supporting a cohesionless backfill with unit weight of 19.0 kN/m^3 and angle of frictional resistance as 30° , if water table is upto top of wall, is:

(Consider unit weight of water = 10 kN/m^3)

(1) 330 kN/m

(2) 1326 kN/m

(3) 166.67 kN/m

(4) 650 kN/m

26.	Cof	ferdam is a :								
	(1)	(1) type of earthen dam for storage of water								
	(2)	type of bridge								
	(3)				reate dry	working area d	uring	construction		
					•	· ·	unig	Lonsii uction		
	(4)	permanent str	ucture	to store water	auring i	iooas				
27.		npactive energy gy used in stand		-	proctor te	st is how many	times	the compactive		
	(1)	2.5′	(2)	3.5′	(3)	4.5′	(4)	5.5′		
28.	be re	ne method of slicectangular with	a base	in the shape o	of:	,				
	(1)	Straight line	(2)	Log spiral	(3)	Arc of circle	(4)	Parabolic arc		
29.	a co	critical height of the sive soil hat $\phi = 10^{\circ}$, is:								
	(1)	1.49 m	(2)	2.98 m	(3)	4.47 m	(4)	5.96 m		
30.	F =	oting of 4m × 21 6 × 10 ⁴ kN/m ² ming rigid footin	and	$\mu = 0.5$. The is						
	(1)	5 mm	(2)	6 mm	(3)	12 mm	(4)	10 mm		

A	9										
31.	During ocdometer tests on soils, the permeability of a saturated clay may be ob- from:										
	(a)	Voids ratio with the change in	l load.								
	(b)	Voids ratio with the change in	logarith	nm of the applied load.							
	(c)	Unit weight of water and degre	ee of co	onsolidation.							
	(d)	Unit weight of water and coeff	icient o	of consolidation.							
	Whi	Which of the following options is correct:									
	(1)	Both (a) and (d)	(2)	Both (a) and (c)							
	(3)	Both (b) and (c)	(4)	Both (a) and (b)							
32.	120 l stres	kPa, the result gives $C' = 12$ kPa ss is:	and φ' =	l stress of 220 kPa and pure water pre=45°. The shear strength in terms of	effective						
	(1)	139 kPa (2) 69.7 kPa		(3) 81.28 kPa (4) 112 k	Pa						
33.	The	The water content corresponding to maximum density is :									
	(1)	Optimum water content	(2)	Maximum water content							
	(3)	Least water content	(4)	Zero water content							
34.		fficient of discharge for an orifice on traction.	is	of coefficient of velocity and co	efficient						
	(1)	an addition (2) a differe	nce	(3) a product (4) a ratio)						
35.	Reci	procating pump belongs to whicl	e following types ?								
	(1)	Rotary pump	(2)	Propeller pump							
	(3)	Mixed flow pump	(4)	Displacement pump							

36.		incompressible fluids in which of instant?	of the f	following cases hydrostatic pressure remains					
	(1)	along horizontal plane							
	(2)	along vertical plane							
	(3)	along both horizontal and verti	cal pla	nes					
	(4)	along inclined plane making an	angle	of 45° with the horizontal					
37.	In which of the following cases streamline, streak line and pathline will coincide with each other ?								
	(1)	Steady flow	(2)	Unsteady flow					
	(3)	Laminar flow	(4)	Turbulent flow					
38.	For	steady uniform flow in prismatic	channe	el, which of the following statements is true?					
	(1)	Slope of energy line is more than	n slope	e of channel bed					
	(2)	Slope of energy line is same as s	lope of	channel bed					
	(3)	Slope of energy line is more than	n slope	of free surface					
	(4)	Slope of energy line is more that surface.	an slop	e of channel bed but less than slope of free					
39.		ich of the following terms are used and hydraulic grade line at any p		licate vertical distance between energy grade f flow at given section :					
	(1)	Piezometric head	(2)	Velocity head					
	(3)	Elevation head	(4)	Total head					

- 40. Which of the following is the cause for separation of boundary layer?
 - (1) Positive pressure gradient
 - (2) Negative pressure gradient
 - (3) Boundary layer thickness reducing to zero
 - (4) Laminar flow changing to turbulent flow
- **41.** Bernoullis equation in it's original form is applicable to which of the following types of flow?
 - (1) flow along a streamline
- (2) flow of an ideal fluid

(3) steady flow

- (4) all the above
- 42. Which of the following is correct dimension for dynamic viscosity?
 - (1) MLT^{-1}
- (2) ML^2T^{-1}
- (3) $ML^{-1}T^{-1}$
- (4) $ML^{-1}T^{-2}$
- **43.** Newtonian fluids satisfy which of the following equations ?
 - (1) $\tau = \mu \left(\frac{\mathrm{d}u}{\mathrm{d}y}\right)^2$

(2) $\tau = \tau_c + \mu \left(\frac{du}{dy} \right)$

(3) $\tau = \mu \cdot \frac{du}{dy}$

- (4) $\tau = \tau_c + \mu \left(\frac{du}{dy}\right)^2$
- **44.** If the maximum depth of 50 years 10 h rainfall depth at Nanded is 150 mm, the 50 years 4 h maximum depth at the same place is :
 - (1) < 150 mm

(2) > 150 mm

(3) = 150 mm

(4) Inadequate data

45.	A culvert is designed for a peak flow Q_p on the basis of the rational formula. If a storm of the same intensity as used in the design but of duration twice larger occurs, the resulting peak discharge will be:								
	(1)	Q_{P}	(2) 2Q _P	(3)	$Q_P/2$	$(4) (Q_p)^2$			
46.	A u	nit hydrograph h	as	_ ·					
	(1)	One unit of pea	k discharge						
	(2)	One unit of rair	nfall duration						
	(3)	One unit of dire	ect runoff						
	(4)	One unit of the	time base of d	lirect runoff					
47.	The	Muskingum meth	nod of flood ro	outing is a :					
	(1)	hydrologic char	nel routing m	nethod					
	(2)	form of reservoi	r routing met	hod					
	(3)	hydraulic routi	ng method						
	(4)	complete numer	rical solution o	of St. Venant e	quations				
48.	Surc	harge storage in a	reservoir is t	he volume of s	torage betw	een :			
	(1)	minimum pool l	evel and norn	nal pool level					
	(2)	normal and max	aimum pool le	evel					
	(3)	dead storage lev	el and maxim	num storage lev	el				
	(4)	minimum and a	verage pool le	evel					

- **49.** In routing a flood through a reach, the point of intersection of inflow and outflow hydrographs coincides with the peak of out flow hydrograph:
 - (1) in all the cases of flood routing
 - (2) when the inflow is into a reservoir with an uncontrolled outlet
 - (3) in channel routing only
 - (4) in all cases of reservoir routing
- 50. The discharge per unit drawdown at a well is known as:
 - (1) Specific yield
- (2) Specific storage

(3) Safe yield

- (4) None of these
- 51. If $S_y = \text{specific yield and } S_r = \text{specific retention, then}$:
 - (1) $S_y + S_r = 0.50$

(2) $S_y + S_r = Porosity$

(3) $S_v + S_r = 1.0$

- (4) $S_y + S_r = Permeability$
- **52.** An acquifer confined at the bottom but not at the top is called:
 - (1) Semiconfined acquifer
- (2) Unconfined acquifer
- (3) Confined acquifer
- (4) Perched acquifer
- **53.** The use of the unit hydrograph for estimating floods is limited to catchments of size less than:
 - (1) 5000 km²
- (2) 500 km^2
- (3) 10^4 km^2
- (4) no upper limit

54.		cy's law is valid in a porous media flow if the Reynolds number (Re) is less than unity. s Reynolds number is obtained by :							
	(1)	(discharge velocity × maximum grain size)/μ							
	(2) (actual velocity \times average grain size)/ ν								
	(3)	(discharge velocity \times average grain size)/ ν							
	(4)	(discharge velocity \times pore size)/ ν							
55.	An isochrone is a line on the basin map :								
	(1)	(1) Joining raingauge stations with equal rainfall duration							
	(2)	(2) Joining points having equal standard time							
	(3)	(3) Connecting points having equal time of travel of the surface runoff to the catchment outlet							
	(4)	That connects points of equal rainfall depth in a given time interval							
56.	Acce	ording to Dr. Khosla's theory, the exit gradient in the absence of a downstream cutoff							
	(1)	zero (2) infinity (3) unity (4) very large							
57.	Upli	ift pressure on the dam :							
	(1)	virtually increases the downward weight of the body of the dam							
	(2)	increases the stability of dam							
	(3)	virtually decreases the downward weight of the body of the dam							
	(4)	has no effect on the stability of dam							
58.	Spill	lway is a structure constructed at a dam site for :							
	(1)	effectively disposing of dead storage for drinking water							
	(2)	effectively disposing of surplus water on downstream side							
	(3)	effectively disposing of water in canal for irrigation							
	(4)								

- **59.** What does an earthquake acceleration of 0.15 g acting vertically downward in a gravity dam cause ?
 - (1) an increase in the weight of dam by 15%
 - (2) reduction in unit weight of concrete only by 15%
 - (3) decrease in unit weight of concrete and water by 15%
 - (4) increase in uplift pressure by 15%
- 60. Elementary profile of a gravity dam will be right-angled triangle having zero width at the water level and a base width (B) at bottom:
 - (1) When subjected to water pressure on upstream side only
 - (2) When subjected to water pressure and silt pressure
 - (3) When subjected to silt pressure on upstream side only
 - (4) When subjected to Ice pressure on upstream side only
- **61.** The meander ratio is the ratio of :
 - (1) the length of the river channel to the axial length of the river
 - (2) the axial length of the river to the length of the river channel
 - (3) the meander length to the meander belt
 - (4) the meander belt to the meander length
- **62.** The following data is available for a cross drainage project :

Parameter	Canal	Drainage
FSL(m)	110	109
Bedlevel (m)	105	107
Discharge (m ³ /s)	90	15

The most appropriate cross drainage work for this situation is:

- (1) syphon aqueduct
- (2) syphon

(3) super passage

(4) aqueduct

- **63.** At the base of a gravity dam section, the vertical stress at the toe is 4 MPa. The slope of downstream face of dam is 0.707 horizontal : 1 vertical. If there is no tail water, the major principal stress at the toe is :
 - (1) 4 MPa
- (2) 5 MPa
- (3) 6 MPa
- (4) 8 MPa
- 64. In a solid-roller bucket type energy dissipator, the energy dissipation is :
 - (1) due to formation of a hydraulic jump.
 - (2) due to interaction of free jet with air and due to impact on downstream channel bed.
 - (3) due to interaction of two complementary rollers.
 - (4) due to lateral spreading of the jet and partly due to interaction of two rollers.
- 65. Identify the correct statements:

The ski-jump energy dissipator is used usually when:

- (a) the tail water level is too low for hydraulic jump to form
- (b) the bed of the stream is of sound rock
- (c) the erosion from the jet is not a problem for the safety of the structure
- (d) there is considerable air entrainment of the flow by the time it reaches the bucket

Answer options:

(1) (a), (c) and (d)

(2) (b), (c) and (d)

(3) (a), (b) and (d)

- (4) (a), (b) and (c)
- **66.** The perimeter of a regime channel having width B and depth D is :
 - (1) $B + \sqrt{2} D$
- (2) $B + 2\sqrt{2} D$
- (3) $B + \sqrt{5} D$
- (4) $B + 2\sqrt{5} D$

67.	Grovnes	are	constructed	to	:
	OI O y LICO	uic	COLIDITOR		•

- (1) control the river flood
- (2) protect the bank from which they are extended
- (3) permit the construction in flowing river
- (4) ensure effective disposal of sediment load
- **68.** In a saddle -siphon spillway, an air vent is provided at the level of the full reservoir surface :
 - (1) to break the siphonic action at that level.
 - (2) to initiate the siphonic action at that level.
 - (3) to prevent cavitation.
 - (4) to maintain ventilation inside the siphon.

69. PIEV theory is related to :

(1) Accident study

- (2) Pavement design
- (3) Sight distance study
- (4) Origin and Destination study

70. Specific gravity of pure bitumen is in the range of :

- (1) 1.10 to 1.25
- (2) 1.25 to 1.40
- (3) 0.97 to 1.02
- (4) Less than 1.0

71. Super elevation to be provided in horizontal curves of radius R in hill roads is given by :

- (1) $V^2/127R$
- (2) $V^2/17.5 R$
- (3) $V^2/225R$
- (4) $(V+8)^2/127R$

72.	Org	Organisations/ Institutions involved with Road Development in India are :									
	(1)	NHAI, IRC,	BRO		(2)	NH.	AI, IRC, B	CI			
	(3)	IRC, HRB, B	BCI		(4)	NH	AI, HRB, E	BCI			
73.		has fixed the	maximur	n limit of s	uper e	levatio	on for mixe	ed traf	fic in p	plain and rolling	
	(1)	10%	(2)	7 %		(3)	5 %		(4)	4%	
74.	In h	ot climates, bi	tumen of	what pene	etration	n grad	e is prefer	red ?			
	(1)	80/100			(2)	60/	70				
	(3)	30/40			(4)	Non	e of the ab	ove			
75.	Pave	ements of majo	or roads s	should be d	lesigne	ed for	atleast a li	fe peri	od of :		
	(1)	5 years	(2)	10 years		(3)	20 years		(4)	30 years	
76.		exible paveme er the value o								f traffic volume,	
	(1)	More	(2)	Less		(3)	Same	(4)	Non	e of the above	
77.	The	centrifugal for	ce is acti	ng on a vel	hicle n	egotia	ting a :				
	(1)	Railway trac	k crossin	g	(2)	Rive	r crossing				
	(3)	Vertical curv	re		(4)	Hori	zontal cur	ve			

78.	Ori	Origin and Destination studies are carried out for:										
	(1)	Planning of r	oad net	work for vehicu	ılar traf	fic						
	(2)											
	(3)											
	(4)	Geometric De	esign									
79.	The	minimum stopp	oing sigl	nt distance on sir	ngle lane	e roads with two	o - way tr	raffic movements				
	(1)	2 × SSD	(2)	$0.5 \times SSD$	(3)	$4 \times SSD$	(4)	equal to SSD				
80.		a rightangled i	road int	ersection with	two -w	ay traffic, the	total nu	mber of conflict				
	(1)	24	(2)	11	(3)	6	(4)	4				
81.	App	proach on either	side of	a bridge will h	ave a m	inimum straig	ht length	of:				
	(1)	5 mt	(2)	15 mt	(3)	50 mt	(4)	150 mt				
82.	The	selection of site	for roa	d bridges deper	nds on :			A MICE STATE OF THE STATE OF TH				
	(1)	Nature of rive	er banks	and appropria	ite arche	es						
	(2)	Width and de	pth of r	iver at site to be	e bridge	d						
	(3)	Availability o	f good a	and safe founda	tion for	bridge						
	(4)	All of the abo	ve									
83.	In cl	ass 70 - R loadi	ng, the	minimum spaci	ng betw	veen vehicles is	s:					
	(1)	30 m	(2)	40 m	(3)	60 m	(4)	70 m				

84. A temporary enclosure built to exclude water from the working area and to pro access to the area within, during the construction of a foundation or other struct may be undertaken below water level is known as:											
	(1)	Shell	(2)	Cofferdam							
	(3)	Caissions	(4)	Any of the above							
85.	Whe	en is the span of the bridge ecc	onomic ?								
	(1) When the cost of supporting system of one span is equal to cost of one pier										
	(2)	2) When the cost of supporting system of one span is equal to cost of one abutment									
	(3)	(3) When the cost of one pier is equal to half the cost of abutment									
	(4)	(4) When the cost of supporting system of one span is equal to twice the cost of pier									
86.	The	stream at the ideal bridge site	should be	:							
	(1)) Well defined and as deep as possible									
	(2)	Well defined and as wide as possible									
	(3)	(3) Well defined and as narrow as possible									
	(4)	Deep and as wide as possible									
87.	The	small submersible bridge havi	ng no ope	nings is known as :							
	(1)	Cause way	(2)	Dead end bridge							
	(3)	Irish bridge	(4)	Either (1) or (3)							
88.	Susp	pension bridges are :									
	(1)	Movable bridges	(2)	Suitable for long spans							
	(3)	Suitable for short spans	(4)	Used over navigable channels							

89. The wall which is a splayed extension of an abutment of a slope of the embankr called:						embankment is							
	(1)	Reta	aining	wall	(2)	Para	pet w	all	(3)	Support wall	(4)	Wing wall	
90.	Stre	ngthe	ning o	f brid	ges is o	done	for :						
	(1)	Safe	ety aga	ainst e	arthqu	ıake		(2)	Safe	ty during floods	}		
	(3)	Old	bridge	es				(4)	New	vly constructed l	oridges		
91.	Mate	ch Lis	st I (M	ethod	of disp	oosal)	with	List I	I (Ter	ms related to me	ethod) :		
List I List II													
	(a)	Sanitary land fill					(i)	High operational and maintenance cost					
	(b)	Incineration					(ii)	Leachate collection and treatment					
	(c)	Con	nposti	ng			(iii)	Pre-sorting, grinding and turning					
	(d)	(d) Salvage by seggregation		(iv)	Suitable for recyclable wastes								
		(a)	(b)	(c)	(d)								
	(1)	(ii)	(iii)	(i)	(iv)								
	(2)	(ii)	(i)	(iv)	(iii)								
	(3)	(i)	(ii)	(iii)	(iv)								
	(4)	(ii)	(i)	(iii)	(iv)								
92.	Time	e of c	oncen	tration	is rel	evant	to de	termi	ne the	e design of			
	(1)	Stor	m sew	ver									
	(2)	Sani	itary s	ewer									
	(3)	Both	n storr	n and	sanita	ry se	wers						
	(4)	Nei	ther st	orm s	ewer r	or sa	nitary	sewe	er				

93.	The	The relation between BOD and COD IS:									
	(1)	BOD is always less than COD.									
	(2)	BOD is greater than COD.									
	(3)	BOD is equal to COD.									
	(4)	There is no relation between BC	DD and	I COD.							
94.	Whi		ethods	of treatment and disposal of biomedical							
	(1)	Hydroclave method	(2)	Autoclave method							
	(3)	Incineration	(4)	All the above							
95.		at is the typical moisture content ditions ?	range	of Municipal Solid Waste (MSW) for Indian							
	(1)	25 to 40% (2) 45 to 60%	%	(3) 62 to 70% (4) 5 to 15%							
96.	Whi	ch one of the following methods o	an be e	employed for solid waste excluding garbage?							
	(1)	Composting	(2)	Incineration							
	(3)	Engineered land fill	(4)	Pyrolysis							
97.	Asse	ertion (A): If the intake is to be concave bank and no		ed on the curve, it should be located on the he convex bank.							
	Reasoning (R): The scouring tendencies will be more on the convex bank of the river										
	Select the answer from the following:										
	(1)	(1) Both (A) and (R) are correct and (R) is the correct explanation of (A).									
	(2)	Both (A) and (R) are correct but	(R) is	not the correct explanation of (A).							
	(3)	(A) is true but (R) is false.									
	(4)	(A) is false but (R) is true.									

98.	What is the treatment for removal of color due to colloidal organic matter :								
	(1)	Aeration							
(2) Primary sedimentation									
	(3) Co-agulation at low pH with alum salts								
	(4) All the above								
99.	In Lo	ondon Smog episode, which was the responsible pollutant ?							
	(1)	Carbon monoxide (2) Oxides of Nitrogen							
	(3)	Sulphur dioxide (4) Ozone							
100.	100. Which of the following statements are not correct in relation to water distribution system?								
	(a)	Tree system requires more number of valves and length of pipe.							
	(b)	Reticulation system has multiple flow paths and pressures are equalised.							
	(c)	Hardy-Cross method is used to analyze both tree and reticulation systems.							
	Ansv	wer options :							
	(1)	(a), (b) and (c) (2) (a) and (b) (3) (b) and (c) (4) (a) and (c)							

- o 0 o -

SPACE FOR ROUGH WORK

सूचना — (पृष्ठ 1 वरून पुढे...)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यितिरिक्त उत्तरपित्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/िकंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतःबरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमना	प्रश्न
1 . 1 11	* ' '

Pick out the correct word to fill in the blank:

- Q. No. 201. I congratulate you ______ your grand success.
 - (1) for (2) at (3) on (4) about

ह्या प्रश्नाचे योग्य उत्तर ''(3) on'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''(3)'' हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्र. क्र. 201. (1) (2) (4)

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK