नदो

वेळ : 2 (दोन) तास

2013

प्रश्नपुस्तिका क्रमांक BOOKLET NO.

प्रश्नपुस्तिका स्थापत्य अभियांत्रिकी

पेपर-1

एकूण प्रश्न : 100

एकूण गुण : 200

शेवटचा अंक

सूचना

सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. अ<mark>सा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका स</mark>मवेक्षकांकडून लगेच बदलून घ्यावी. परीक्षा-क्रमांक

आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- ↑ केंद्राची संकेताक्षरे ्वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे **न विसरता नमूद करावा**.
- या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला ४ पर्यायी उत्तरे सुचिवली असून त्यांना १, २, ३ आणि ४ असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकार उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- ं उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद के<mark>लेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपास</mark>ले जाणार नाही.
- ्रप्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरापैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

1.	Consider the following statements :										
	(a)	The melting point o	f mild steel	is 1400	°C						
	(b)	The ultimate compre	essive streng	gth of 1	nild steel is 80 to 12	20 KN/cm ²					
	Nov	v state whether :									
	(1)	(a) True, (b) False	(2)	(a) I	False, (b) False						
	(3)	(a) True, (b) True	(4)	(a) I	False, (b) True						
2.	The	bearing capacity of so	oil can be de	etermin	ed by :						
	(1)	method of loading		(2)	plate load test						
	(3)	both (1) and (2)		(4)	none of the above						
3.	For	what span is the Que	en Post roof	truss s	suitable ?						
	(1)	5 to 9 m		(2)	9 to 14 m						
	(3)	14 to 18 m		(4)	none of the aobve						
4.	Wha	at is a Header as seen	in elevation	of wa	1?						
	(1)	1) Longer face of brick									
	(2)	Horizontal distance	between ve	rtical jo	oints of successive	brick courses					
	(3)	Lower surface of bri	ick when lai	id flat							
	` /										
	(4)	Shorter face of brick									
5.	(4)	Shorter face of brick		low te	mperature temperir	ng process ?					
 5.	(4)	The state of the s		low te	mperature temperir 200°C to 250°C	ng process ?					
 5.	(4) Wha	nt is the temperature r			_	ng process ?					
5.	(4) Wha (1) (3)	nt is the temperature r 150°C to 200°C	ange in the	(2)	200°C to 250°C 250°C to 300°C						

JO2					4					A	
7.	A d	istemper is comp	osed o	of a base w	rith:						
	(1)	Chalk	(2)	Water		(3)	Casein	(4)	Glue		
8.	Wha	at causes Bulking	g of sa	nd ?							
	(1)	Surface moistu	ıre		(2)	Clay	content				
	(3)	Air voids			(4)	Visc	osity				
9.	For	what span is the	king p	oost roof tr	uss su	itable					
	(1)	5 to 9 m			(2)	9 to	14 m				
	(3)	14 to 18 m			(4)	non	e of the above				
10.	The	reflected sound	ich is kr	nown as :							
	(1)	Dead spot	(2)	Sound fo	oci	(3)	Sound echo	(4)	Accostics		
11.	The common criterion for size of doors used in India is :										
	(1)	Width $= \{0.40$	to 0.60)} height	(2)	Heig	ght = {width	+ 1.2 m	eter}		
	(3)	Both (1) and (2	2)		(4)	Non	e of the above				
12.	Wha	at is the recomm	nended	slump val	lue for	rigid	pavement cons	struction	1?		
	(1)	40 to 50 mm	(2)	10 to 25	mm	(3)	25 to 50 mm	(4)	20 to 40 r	nm	
13.	Wha	nt is strengthenir	ng the	shallow for	undatio	ons of	an existing bu	ilding ca	alled ?		
	(1)	Scaffolding	(2)	Staging		(3)	Underpinnir	ng (4)	Bracing		
14.	What is the average thickness of first coat of cement mortar plaster on brick masonry?										
	(1)	10 mm	(2)	8 mm		(3)	20 mm	(4)	12 mm		

A					5						JO2	
15.	Wha	at is the Dia	mond bit u	sed as cu	tting too	l in co	ore drilli	ng called	1?			
	(1)	Shot	(2)	Bort		(3)	Port		(4)	Bortz		
16.	Hov	v is the Zor	ne between	parallels	of lattitu	de 23	° 27′N a	nd 23° 27	7'S kna	own as ?		
	(1)	Torrid Zo	ne		(2)	North Temperate Zone						
	(3)	South Ter	nperate Zor	ne	(4)	Nor	th Frigid	Zone				
17.		In a flitched beam, one section is reinforced with another section. The purpose of such composite beam is to improve										
	(1)	Shear force	e over the	section	(2)	Mor	nent of	Resistan	ce ove	r the section	on	
	(3)	Appearan	ce of the se	eciton	(4)	All	of these					
18.	A column of length 'L' is fixed at bottom and hinged at top then the equivalent length o column is taken as :											
	(1)	L	(2)	2L		(3)	L/2		(4)	$L/\sqrt{2}$		
19.	insta	rcular rod o antaneous st od is 10 mm	ress develo	ped in the	e rod due	to re	leasing l	oad is 40	0 MPa.			
	(1)	5π	(2)	10π		(3)	12π		(4)	15π		
20.		cantilever be	,	ected to a	point lo	ad at	its free e	end, ther	the sh	near force	under	
	(1)	zero			(2)	less	than the	load				
	(3)	equal to tl	ne load		(4)	mor	e than tl	ne load				

21. The bulk modulus of an elastic body subjected to normal tensile stresses in all directions (x, y and z) is _____.

Where μ - poisson's ratio and E - young's modulus.

- (1)
- $\frac{\mu E}{3(\mu 2)}$ (2) $\frac{\mu E}{3(\mu + 2)}$ (3) $\frac{E}{3(1 2\mu)}$ (4) $\frac{E}{2(1 + \mu)}$
- 22. Two bars of the same size but of different materials are subjected to the same tensile force. If the bars have their axial elongation in the ratio of 2:3, the ratio of modulus of elasticity of the two materials will be:
 - (1)2:3
- (2) 3:2
- (3) 6:4
- (4)4:10
- 23. If a metal bar fixed at either ends is cooled by reducing the temperature by 30°C, the nature of the stresses developed in the bar will be:
 - Tensile (1)

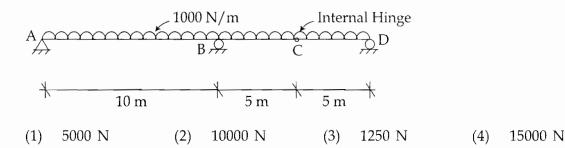
(2) Compressive

(3) Zero

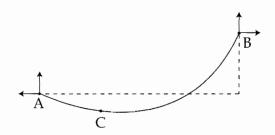
- (4)None of the above
- A beam of span 'L' is simply supported at ends A and B carries a point load at C at a 24. distance 'a' from A and 'b' from B. If a < b then the maximum deflection will occur :
 - (1) at C

- Between A and C (2)
- Between B and C
- **(4)** Any where along the span
- A circular bar of length (l) uniformly tapers from diameter (d_1) at one end to diameter (d_2) at the other end. If the bar is subjected to axial tensile force (p) then its elongation is equal to _____ $(d_1 > d_2)$
 - (1)

- (2) $\frac{PL}{A_1A_2E}$ (3) $\frac{4PL}{\pi Ed_1d_2}$ (4) $\frac{PL}{4\pi Ed_1d_2}$


SPACE FOR ROUGH WORK

- When a body is subjected to the mutually perpendicular stresses (σx and σy) then the 26. centre of the mohr's circle from y-axis is taken as:
 - (1)


(2) $\frac{\sigma x - \sigma y}{2}$

- $\frac{\sigma x \sigma y}{2} + \tau XY$
- (4) $\frac{\sigma x \sigma y}{2} \tau XY$
- 27. What does moment area method find?
 - (1)Bending moment of beam
- (2)Deflection of beam
- Moment of Inertia (3)
- Reactions of beam (4)
- If a body is subjected to a direct normal stress of intensity 'δ' along 'X' direction, then the intensity of maximum shear stress developed on the plane inclined at 45° to line of action of applied stress will be ______.
 - (1)
- (2) $\frac{\delta}{2}$
- (3) 2δ
- **(4)** 0
- If a circular shaft of diameter (D) is fixed at one end and subjected to torsional moment (T) at other end, then shear stress developed in shaft is:
 - $16T/\pi D^{3}$ (1)
- (2) $\pi T/16D^3$
- (3) $32T/\pi D^4$
- (4) $16T/\pi D^4$
- Elongation of a circular rod tapering from zero at one end and diameter 'D' at the other end with ' γ ' as the density and 'L' as the Length due to self weight is _____.
 - (1) $\frac{\gamma L^2}{2E}$ (2) $\frac{L^2}{2\gamma E}$ (3) $\frac{\sigma L}{\gamma E}$

31. The reaction for the support 'B' of a beam loaded as shown in fig. is:

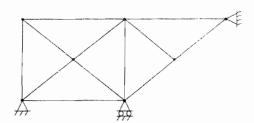
32. In the cable shown in fig the minimum tension occurs at:

(1) A

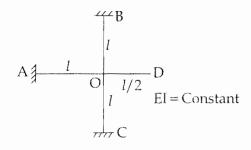
(2) B

(3) C

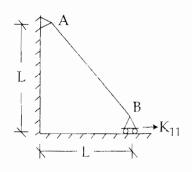
- (4) Between (A) and (C)
- 33. A beam AB of Length 'L' is hinged at its ends and carries a transverse external loading such that the end 'B' is sunk by an amount ' δ '. The fundamental slope deflection equation is:


$$(1) \quad M_{AB} = \frac{2EI}{L} \left(\theta_A + 2\theta_B - \frac{3\delta}{L} \right) + M_{FAB}$$

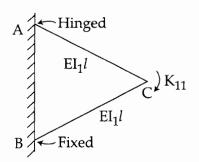
$$(2) \quad M_{AB} = \frac{3EI}{L} \left(2\theta_A + \theta_B - \frac{3\delta}{L} \right) - M_{FAB}$$


(3)
$$M_{AB} = \frac{3EI}{L} \left(2\theta_A + \theta_B + \frac{3\delta}{L} \right) - M_{FAB}$$

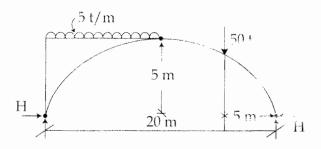
$$(4) \quad M_{AB} = \frac{2EI}{L} \left(2\theta_A + \theta_B - \frac{3\delta}{L} \right) + M_{FAB}$$


34. The degree of static indeterminancy in the frame shown in fig. is:

- (1) 1
- (2) 2
- (3) 3
- (4) Zero
- **35.** A steel frame is shown in the figure. If joint 'O' of the frame is rigid, the rotational stiffness of the frame at point 'O' is given by :

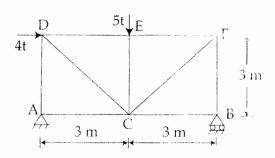


- (1) 11EI/l
- (2) 10EI/I
- (3) 8EI/l
- (4) 6EI/l
- 36. Horizontal stiffness coefficient K_{11} of bar 'AB' is given by :


- (1) $AE/l\sqrt{2}$
- (2) AE/2*l*
- (3) AE/l
- (4) 2AE/I

- 37. For a three hinged parabolic arch (span 'l', rise h) carrying a uniformly distributed load w/unit length covering the entire span pick up the correct statement from the following:
 - (1) horizontal thrust is $wl^2/8h$
- (2) S.F. will be zero throughout
- (3) B.M will be zero throughout
- (4) all the above
- 38. In moment distribution method of analysis, the following statement is true:
 - (1) The absolute stiffness of a prismatic bar with far end being fixed is 4EI/L
 - (2) The absolute stiffness of a prismatic bar with far end being simply supported is 3EI/4L
 - (3) The absolute stiffness of a prismatic bar with far end being pin-jointed is 3EI/L
 - (4) All the above
- **39.** Rotational stiffness coefficient K_{11} for the frame having two members of equal EI/l is given by:

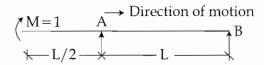
- (1) 5EI/l
- (2) 6EI/l
- (3) 7EI/l
- (4) 8EI/l


40. A three hinged arch of span 20 m and rise 5 m is loaded as shown in fig. The horizontal thrust 'H' is:

- (1) 75 t
- (2) 100 t
- (3) 125 t
- (4) 50 t

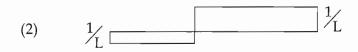
- 41. For which structures Influence lines are drawp?
 - (1) of any type

- (2) statically determinate
- (3) pin jointed stress
- (4) none of the above
- **42.** The force in member AC of the truss shown in fig. is:


(1) 5t tension

(2) 4t compression

(3) 4t tension


(4) 5t compression

43. A simply supported beam with an overhang is traversed by a unit concentrated moment from left to the right as shown below :

The influence line for reaction at 'B' is given by

- (4) Zero everywhere
- **44.** A two hinged parabolic arch of span '*l*' and rise 'h' carries a load varying from zero at the left end and 'w' per unit run at the right end. The horizontal thrust is:
 - (1) $wl^2/4h$
- (2) $wl^2/8h$
- (3) $wl^2/12h$
- (4) $wl^2/16h$
- **45.** A cross section which can develop plastic moment of resistance but have inadequate plastic hinge rotation capacity for formation of plastic mechanism is called as :
 - (1) class 1 plastic section
- (2) class 2 compact section
- (3) class 3 semi compact section
- (4) class 4 slender section
- **46.** In plate girder, the web plate is connected to the flange plates by fillet weld. The size of fillet weld is designed to resist :
 - (1) The vertical shear force at the section
 - (2) The force causing buckling in the web
 - (3) The horizontal shear force between flange and web plate
 - (4) The bending stress in the flange

47.	As per	IS 800-2007,	Tensile	strength	ı of	а	tension	member	is:	

- (1) Strength corresponding to yielding of gross area
- (2) Strength corresponding to rupture at critical/net section
- (3) Strength corresponding to block shear failure
- (4) Minimum of all of the above

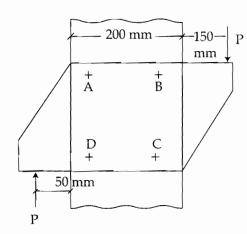
48. As per IS 800-2007 design strength of a fillet weld is given by fwd =
$$\frac{fu}{\sqrt{3} \ \gamma mw}$$
, where :

- (1) fu is ultimate strength of weld and ymw is partial safety factor of weld
- (2) fu is ultimate strength of parent material and γmw is partial safety factor of weld
- (3) fu is smaller of ultimate strength of weld or parent material and γ mw is smaller of partial safety factor of weld or parent material
- (4) fu is smaller of ultimate strength of weld or parent material and γ mw is partial safety factor of weld
- 49. On what basis is the thickness of base plate in a column base decided?
 - (1) Flexure in base plate
- (2) Axial compression in base plate
- (3) Axial tension in base plate
- (4) Shear in base plate

50. As per IS 875-1984, If V_z = K_1 . K_2 . K_3 . Vb represents design wind velocity then K_3 is

- (1) Risk co-effecient
- (2) Terrain, height and size co-effecient
- (3) Topography coefficient
- (4) None of the above

51. What is the intensity of imposed load on the plan area of a roof truss with 20° slope? Consider that access is not provided except for maintenance:


(1) 0.55 kN/m^2

(2) 0.75 kN/m^2

(3) 0.45 kN/m^2

(4) 0.4 kN/m^2

- A secondary beam ISMB 500 transmits end reaction to the web of main beam ISMB 500. 52. Which of the following types of connection is advisable?
 - Frame connection
- Unstiffened seat connection (2)
- (3)Stiffened seat connection
- (4)Bracket connection
- 53. Maximum resultant shear force acting in a critical rivet/bolt for the following arrangement is:

AB = 120 mm

and BC = 160 mm

- (1)4P
- (2)p
- 2p (3)
- p/4(4)

54. Match Group - I with Group - II

Group - I

- Group II
- IS 800 2007 (a)
- General constructions in steel code of practice (i)
- IS 1893 2002 (b)
- Code of practice for design loads (other than (ii)earthquake) for building structures
- (c) IS 875 - 1987
- Criteria for earthquake resistance design of structure (iii)
- (d) IS 456 - 2000
- (iv) Plain and reinforced concrete - code of practice
- Answer options:
 - (a) (b) (c) (d)
- (1)(i) (ii) (iv) (iii)
- (2)(i) (iii) (ii) (iv)
- (3)(ii) (i) (iii) (iv)
- (4)(iv) (iii) (ii) (i)

55.	A column section is built using two channels keeping back to back at such a spacing that it is equally strong with reference to both the axes. One Engineer suggests lacing while other suggests battens to connect two channels together. Keeping all other parameters same, which of the following is true:										
	(1)	Laced colu	mn will ca	rry more l	oad tha	an bat	tened colu	mn			
	(2)	Battened co	olumn will	carry mor	e load	than :	laced colu	nn			
	(3)	Capacity o	f a column	is indeper	ndent c	of lacin	ng or batte	n			
	(4)	None of ab	ove statem	nents is true	ę						
56.		nt is the maxi mn ?	mum perr	nissible bea	aring p	ressur	e on concr	ete belo	ow the	e base plate	e in a
	(1)	0.7 √fck	(2)	0.446 fck		(3)	0.67 fck		(4)	0.6 fck	
57.	Which of the following is not a solution to limit the web crippling stresses within their permissible value?										
	(1)	Increasing	bearing le	ngth	(2)	Selec	cting a bea	m with	thick	er web	
	(3)	Providing a	a bearing s	tiffener	(4)	Selec	cting a bea	m with	wide	flange	
58.	As per IS800-2007, the minimum diameter of rivet/bolt for joining compression members composed of two components back to back of thickness 10 mm, upto and including 16 mm is:										
	(1)	16 mm	(2)	22 mm		(3)	12 mm		(4)	20 mm	
59.	For o	comfortable a	ascend on	stairs, the r	number	r of ste	eps in each	ı flight :	shoul	d not be gr	eater
	(1)	09	(2)	12		(3)	10		(4)	11	

- 60. A RC column 45 cm × 45cm in section and reinforced with longitudinal reinforcement having 20 sq. cm sectional area is 5 m high. It is fixed at the bottom and perfectly free at top. If the max. allowable stresses are 42.2 kg/cm² and 948 kg/cm² in concrete and steel determine max. load carrying capacity:
 - (1) 48.5 tonnes
- (2) 58.5 tonnes
- (3) 65.5 tonnes
- (4) 85.3 tonnes
- **61.** In simply supported slab the purpose of providing distribution reinforcement is :
 - (1) To distribute the loads
- (2) To distribute the shrinkage stress
- (3) To distribute the temp stresses
- (4) All of the above
- **62.** A T-beam of a roof is 76 cm deep upto centre of tensile steel and has a 152 cm wide flange which is 10 cm thick the width of web is 30 cm. In order to resist a moment of 4.5×10^6 kg cm safely, the minimum area of steel required would be approximately:
 - (1) 10 sq.cm
- (2) 25 sq.cm
- (3) 50 sq.cm
- (4) 100 sq.cm
- **63.** For dog legged stair case floor to floor height is 3.2 m, Rise : 160 mm, tread : 250 mm Depth of waist slab : 200 mm, L.L. =3 kN/m² F.F. 1 kN/m² total working load on stair case is about :
 - (1) 18 kN/m²
- (2) 12 kN/m^2
- (3) 16 kN/m^2
- (4) 20 kN/m^2
- **64.** For counterfort Retaining wall, If *l* is clear distance between the counterfort and P is the intensity of soil pressure. The slab is designed for Bending Moments :
 - (1) Maximum + ve Bm and ve Bm is $\frac{PL^2}{16}$ and $\frac{PL^2}{12}$
 - (2) Maximum + ve Bm and ve Bm $\frac{PL^2}{24}$ and $\frac{PL^2}{12}$
 - (3) Maximum + ve Bm and ve Bm $\frac{PL^2}{16}$ and $\frac{PL^2}{8}$
 - (4) Maximum + ve Bm and ve Bm $\frac{PL^2}{24}$ and $\frac{PL^2}{8}$

- 65. In water retaining structures up to 100 mm thickness the minimum reinforcement in walls floors and roofs in each of the two directions at right angle shall have minimum area equal to:
 - (1) 0.03% of the concrete section
- (2) 0.3% of the concrete section
- (3) 0.2% of the concrete section
- (4) 0.12% of the concrete section
- **66.** In a retaining wall, keyed expansion and contraction joints should be provided at an interval of :
 - (1) 15 m
- (2) 20 m
- (3) 30 m
- (4) 45 m
- **67.** An overhead water tank of capacity 40,000 litres is considered as a :
 - (1) small tank

(2) medium tank

(3) large tank

- (4) very large tank
- **68.** While designing the isolated square column, if p' is the net upward reaction, a is the length of one side of the square footing of column of side b and d is the effective depth of footing, then the punching shear is given by :
 - (1) $p'(a^2+b^2)/4ad$

(2) $p'(a^2-b^2)/4bd^2$

(3) $p'(a^2-b^2)/4bd$

- (4) $p'(a-b)^2/4bd$
- 69. A rectangular beam simply supported over a span of 6 m is provided with tensile reinforcement only. The beam 200 mm wide and 365 mm deep (effective) consists of 4 no. 16 φ, the beam carries a load of 8 kN/m inclusive of self weight and m=13. The maximum Bending moment :
 - (1) $36 \times 10^8 \text{N mm}$

(2) $36 \times 10^7 \text{N mm}$

(3) $36 \times 10^6 \text{N mm}$

(4) $36 \times 10^4 \text{N mm}$

70.	A RC beam 25 cm \times 50 cm in section has a clear span of 5 m and carries a load of 3000 kg/m it is reinforced with 8 bars of 12 mm dia at the bottom and depth of N.A. below the top is 23 cm. The per bend stress is 10 kg/cm^2 . The number of bars that should be bent to take the diagonal tension would be:										
	(1)	02	(2)	03		(3)	04	((4)	05	
71.	In case of RC footing on soils it is usual to keep a minimum overall depth at the edges equal to :										
	(1)	5 cm	(2)	10 cm		(3)	15 cm	(4)	25 cm	
72.	Critical section for shear in case of flat slab is at a distance of :										
	(1)	effective depth of	of slat	from perip	hery	of colu	umn or dro	p panel			
	(2)	d/2 from periph	nery o	f column o	r capit	tal					
	(3) at the drop panel of slab										
	(4)	at the preiphery	of co	lumn							
73.		approximate loss erete is generally i			o the s	lippag	ge of anchor	age in lo	ng s	span prestressed	
	(1)	1 to 3 percent			(2)	3 to	5 percent				
	(3)	5 to 8 percent			(4)	8 to	12 percent				
74.	300	retensioned T-sectors mm and depth =40N/mm². Flex	1600	mm, fpu =	= 1392	2 N/n	nm² Apw:	150 mm = 3182 r	n th	ick width of rib 2 , $xu = 896$ mm,	
	(1)	9125 kN m	(2)	8000 kN n	n	(3)	7000 kN 1	m ((4)	8250 kN m	

75.	What is the purpose of reinforcement in prestressed concrete?										
	(1)	to provide ac	lequate l	ond stress							
	(2)	to resist tensi	le stresse	es							
	(3)	to impart init	ial comp	oressive stre	ss in o	concre	ete				
	(4)	all of the abo	ve								
76.	Mos	st common met	hod of p	restressing 1	used i	for fac	tory productio	n is :			
	(1)	Long Line M	ethod		(2)	Freyssinet system					
	(3)	Magnel Blato	n systen	n	(4)	Lee	- Macall systen	n			
77.		small span gi = 28 × 10 ³ N, ft = 44 mm					* *	hickness	s of web is. If		
78.	150	mm×350 m =1253 N/mm ²	m dee	p has an	effec	tive	cover of 50	mm f	gular section ck = 40N/mm ² section using IS		
	(1)	116 kN m	(2)	140 kN m		(3)	200 kN m	(4)	190 kN m		
79.	For	post tensioned	member	the minimu	ım 28	day	cube strength a	s per IS	code is :		
	(1)	20 N/mm ²	(2)	30 N/mm	2	(3)	40 N/mm ²	(4)	50 N/mm ²		
80.		eccentric tendo tressed beams			icular	to the	e plane of conc	rete at th	e end section in		
	(1)	compression			(2)	beno	ding and comp	ression			
	(3)	compression,	bending	g and shear	(4)	tens	ion and shear				
				-							

81.	According to	IS 1343-1980,	the bearing	stress shall	not exceed:
-----	--------------	---------------	-------------	--------------	-------------

- (1) $0.48 \text{ fci} \times \sqrt{\text{Abr/A punch}} \text{ or } 0.8 \text{ fci}$
- (2) $0.6 \text{ fci} \times \sqrt{\text{Abr/A punch}} \text{ or } 0.85 \text{ fci}$
- (3) $0.7 \text{ fci} \times \sqrt{\text{Abr/A punch}} \text{ or } 0.8 \text{ fci}$
- (4) $0.48 \text{ fci} \times \sqrt{\text{Abr/A punch}} \text{ or } 0.9 \text{ fci}$

82. In case of prestressed concrete beams (girder) the lever arm is :

- (1) Always constant
- (2) Negligibly small
- (3) Subject to change as the load on the girder changes
- (4) does not exist in the absence of live load

83. In High - tensile steel final stress after allowing for all losses of prestress (As per IS 1343 - 1980):

- (1) Not less than 50% of the characteristic tensile strength of tendons
- (2) Not less than 20% of the characteristic tensile strength of tendons
- (3) Not less than 45% of the characteristic tensile strength of tendons
- (4) Not less than 30% of the characteristic tensile strength of tendons

84. The approximate total percentage loss of prestressed in post - tensioned concrete beam is nearly in the range :

(1) 5 to 10 percent

(2) 10 to 15 percent

(3) 15 to 20 percent

(4) 20 to 25 percent

85. For long span girders with curved cables approximate thickness of web for the following data (Vu = 450 kN, $ft = 1.7 \text{ N/mm}^2$, depth of girder 1300 mm) is :

- (1) 170 mm
- (2) 200 mm
- (3) 120 mm
- (4) 300 mm

86.	The	bursting stresses in pr	restressed co	ncrete	mem	bers are develop	oed at :		
	(1)	Bond zone		(2)	Max	imum shear zoi	ne		
	(3)	Anchorage zone		(4)	Max	imum bending	momer	at zone	
87.	Wha	at are the main resour	ces required	for co	nstru	ction industry ?			
	(1)	manpower and mat	erial	(2)	mar	power and mad	chinery		
	(3)	machinery and mate	erial	(4)	all t	ne above			
88.	Whi	ich of the following co	ntrol charts	is suit	able to	o control the def	fects pe	r unit ?	
	(1)	\overline{X} and R chart (2)	P chart		(3)	np chart	(4)	C chart	
89.	Wha	at does the direct cost	of project in	clude	?	_			
	(1)	labour cost (2)	material o	cost	(3)	equipment cos	st (4)	all the above	
90.	Con	sider the following sta	atements :						
	(a)	Critical path is longe	est path in n	etwor	k				
	(b)	Critical path is obtai state whether	ned by joini	ng the	even	t having zero or	minim	um slack. Now	
	Ans	wer options :							
	(1)	(a) True, (b) True		(2)	(a) I	False, (b) False			
	(3)	(a) True, (b) False		(4)	(a) I	False, (b) True			
91.	Whi	ich of the following is	shown on si	te layo	out for	allocation of si	te space	<u> ?</u>	
	(1)) material storage			working areas				
	(3)	3) circulation areas			all t	he above			
								and the second s	

92. Consider the following statements:

- (a) PERT is activity oriented network diagram
- (b) CPM is event oriented network diagram

Now state whether:

Answer options:

(1) (a) true, (b) true

- (2) (a) true, (b) false
- (3) (a) false, (b) false
- (4) (a) false, (b) true

93. What are the objectives of construction management :

- (1) High Quality Workmanship
- (2) Motivating people
- (3) Taking sound decisions
- (4) all of the above

94. Which of the following terms represents the settlement of disputes by unoffical persons chosen by the parties?

- (1) Force Mojure
- (2) Arbitration
- (3) Indemnification (4)
- contract

95. What is the formula for free float?

- (1) F.F. = $T_L^j T_E^i t_{ij}$
- (2) F.F. = $T_E^j T_E^i t_{ij}$
- (3) F.F. = $T_E^j T_L^i t_{ij}$
- (4) F.F. = $T_L^j T_L^i t_{ij}$

96. What type of a drill is the Jack hammer?

- (1) Abrasion
- (2) Churn
- (3) Shot
- (4) Percussion

97.	Con	nsider the following statement	s:								
	(a)	Upto certain duration direc	t cost decre	eases, and there - a	ıfter it star	ts increasin	ıg				
	(b)	Total cost of the project is a	sum of di	rect costs and indir	ect costs.						
	Nov	v state whether :									
	(1)	(a) true, (b) true	(2)	(a) true, (b) false							
	(3)	(a) false, (b) false									
98.	The purpose of job layout is to facilitate the realisation of :										
	(1)	reduction in completion time									
	(2) high productivity from labour and machinery										
	(3)	3) both (1) and (2)									
	(4)	none of the above									
99.	Well points operate satisfactorily if they are installed in :										
	(1)	silt (2) clay		(3) sand	(4)	rock					
100.	Whi	ich of the following effects is p	produced d	ue to compaction b	y pneuma	tic tired rol	lers ?				
	(1)	Static weight	(2)	Impact							
	(3)	Kneading action	(4)	Vibration							
	Milleshill de und eur de Velit de u.e.	WHAT ARE	- 0 () 0								

SPACE FOR ROUGH WORK

सूचना — (पृष्ठ 1 वरून पुढे...)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

				•							
Pick out the correct word to fill in the blank:											
Q. No. 201.	201. I congratulate you your grand success.										
	(1)	for	(2)	at	(3)	on	(4)	about			
	ह्या प्रश	नाचे योग्य उत्तर	(3)	on'' असे आहे.	त्यामु	ळे या प्रश्नाचे	उत्तर ''((3)'' होईल.	यास्तव र	बालीलप्रमा ण	
	प्रश्न ब्र	5. 201 समोरील	उत्तर-इ	क्रमांक ''(3)''	हे वर्तुव	ठ पूर्णपणे छायां	कित कर	न दाखविणे अ	गवश्यक :	आहे.	

प्र. क्र. 201. (1) (2) (4)

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK