MPSC

Notations:

- 1. Options shown in green color are correct.
- 2. Options shown in red color are incorrect.

Group A

Number of optional sections to be attempted: 0, Group Maximum duration: 0, Group Minimum duration: 60, Revisit allowed for view?: No, Revisit allowed for edit?: No, Break time: 0

Assistant Professor Mathematics

Section type: Online, Number of Questions to be attempted: 100, Mandatory or Optional: Mandatory

Subsection: 1, Question Shuffling Allowed: Yes

Question id: 2101 Question Type: MCQ

The set of integers Z with the binary operation * defined by a*b=a+b+1 for a, b ∈ Z is a group. The identity element of this group is

Options:

1.

1

-1

, 2

Question id: 2102 Question Type: MCQ

The group (G,*) is abelin. Which one of the following is true for G. (Question Cancelled)

Options:

- 1. G = g⁻¹ for all g € G
- , $G = g^2$ for all $g \in G$
- 3. $(g^*h)^{-2} = g^{2*} h^2$ for all g, h \in G
- G is a finite group

Question id: 2103 Question Type: MCQ

Which of the following form a group under multiplication?

Options:

- Set of all negative rational numbers
- Set of all nonsingular 2 X 2 matrices
- Set of all 2 X 2 matrices
- Set of all rational numbers

Question id: 2104 Question Type: MCQ

The binary operation * is defined as (a, b)*(c, d) = (ad + bc, bd), then 2)*(3, 5)*(3, 4) is equal to (Question Cancelled)

Options:

- (74, 40)
- , (32, 40)
- _{3.} (23, 11)
- 4. (7, 11)

Question id: 2105 Question Type: MCQ

A self- complemented distributed lattice is called

Options:

- Boolean Algebra
- Modular Lattice
- , Complete Lattice
- Self-dual Lattice

Question id: 2106 Question Type: MCQ

The lattice defined by Hasse diagram is given here.

....

How many complements the element 'e' has

Options:

1. 2

3

۷. ۲

3. 3.

4

Question id: 2107 Question Type: MCQ

The Boolean Expression A + BC is equal to

Options:

$$(\overline{A}+B)(\overline{A}+C)$$

Question id: 2108 Question Type: MCQ

The term "sum of product" in Boolean algebra means

Options:

- AND function of several OR function
- 2. OR function of several AND function
- AND function of several AND function
- OR function of several OR function.

Question id: 2109 Question Type: MCQ

Which of the following represents the sequence 1, 2, 5, 11, 26 ... if $t_0 = 1$ and $t_1 = 2$.

$$t_n = t_{n-1} + t_{n-2}$$

$$t_{n} = 2t_{n-1} + 1$$

$$t_n = 2t_{n-1} + 2$$

$$t_n = t_{n-1} + 3t_{n-2}$$

Question id: 2110 Question Type: MCQ

Suppose a coin is tossed until 2 Heads appear and then the experiment is stopped, find a recurrence relation for the number of experiments that end on the nth toss on sooner.

Options:

$$a_{n} = a_{n-1} + (n-1)$$

$$a_{n} = a_{n-1} + n$$

$$a_{n} = a_{n-1} + 2(n-1)$$

$$a_{n-1} + (n-2)$$

Question id: 2111 Question Type: MCQ

A partial order \leq is defined on the set S= { x, a_1 , $a_{2,...,}$ a_n , y} as $x \leq a_i$ for all i and $y \leq a_i$ for all i, where $n \geq 1$. The number of total orders on the set S which contain partial order \leq is

Options:

- 1
- ູ n
- n+1
- 3. **n!**

Question id: 2112 Question Type: MCQ

The number of different permutations of the word BANANA is

Options:

- 720
- 60
- , 120
- 4. 360

Question id: 2113 Question Type: MCQ

Ramesh has 6 friends. In how many ways he can invite one or more of them at a dinner.

- 61
- 62
- 63
- 64

```
Question id: 2114 Question Type: MCQ
The minimum number of students that can be selected form 50 cities, so that at least 15
students are from one of the city is
Options:
   701
   749
  750
<sub>4.</sub> 751
Question id: 2115 Question Type: MCQ
If G is a group of order 5, then the number of subgroups of G is
Options:
1. 1
2. 2
3.
Question id: 2116 Question Type: MCQ
Let G= {1, 2, 3, 4, 5, 6} be a group under multiplication module 7. Then inverse of 2 is
Options:
   1
   2
   3
3.
  4
Question id: 2117 Question Type: MCQ
 G= {1, 2, 4, 7, 8, 11, 13, 14} under multiplication modulo 15 form a group. The inverse of
 the element 7 is
Options:
1. 13
2. 7
<sub>3.</sub> 11
8
```

4

Question id: 2118 Question Type: MCQ

G = {1, 2, 3, 4, 5, 6} under modulo 7 is a cyclic group. The generator of this group is (Question Cancelled)

Options:

- 2
- 2. 3
- 4
- 5
- 4.

Question id: 2119 Question Type: MCQ

Let R be a ring with identity element 1. We make R into another ring R' by defining a + b = a + b + 1 and a*b = ab + a + b. Then the 0 element and 1 element of R' are respectively (Question Cancelled)

Options:

- 1 -1 and 1
- ₂ 0 and 1
 - 1 and 0
- 3.
- 0 and -1

Question id: 2120 Question Type: MCQ

Taylor's series expansion of $f(x) = \frac{1}{x}$ about x=1 is

Options:

1.
$$1+(x-1)+(x-1)^2+(x-1)^3+...$$

1+
$$(x-1)$$
 + $\frac{(x-1)^2}{2!}$ - $\frac{(x-1)^3}{3!}$ +...

$$_{3.}$$
 1- (x-1)+(x-1)²-(x-1)³+...

$$_{4}$$
 1- $(x-1)$ + $(x+1)^{2}$ - $(x+1)^{3}$ +...

 $Question\ id: 2121 \quad \ Question\ Type: MCQ$

If $x = r \cos \theta$, $y = r \sin \theta$, then $\frac{\partial y}{\partial x}$ is equal to

- $_{1}$ sec θ
- $\sin \theta$

 $_{3.}\cos\theta$

 $_{4.}$ cosec θ

Question id: 2122 Question Type: MCQ

If $u = a x^2 + 2h xy + by^2$, then $x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y}$ is equal to (Question Cancelled)

Options:

- 1. 0
- 3.2u

Question id: 2123 Question Type: MCQ

If
$$u = f\left(\frac{x}{y}\right)$$
, then

Options:

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$$

$$x\frac{\partial u}{\partial x} - y\frac{\partial u}{\partial y} = 0$$

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = u$$

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$$

Question id: 2124 Question Type: MCQ

If $u=x^2\tan^{-1}\frac{y}{x}$, then $x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}$ at x=1, y=1 is

Options:

3. $\frac{\pi}{4}$ 4. $\frac{\pi}{2}$

Question id: 2125 Question Type: MCQ

The equation of tangent place to the surface $x^2+y^2+z^2=14$ at (1 2 3) is

Options:

2x+4y+6z=14

$$x + 2y + 3z = 14$$

$$x + 2y + 3z = 0$$

$$x + 2y + 3z = 1$$

Question id: 2126 Question Type: MCQ

If \vec{F} is velocity of a fluid particle then $\int_{\mathcal{C}} \vec{F} \, . \mathrm{d} \vec{r}$ represents

Options:

Work done

- Flux
- 3. Conservative field

Circulation

Question id: 2127 Question Type: MCQ

The value of the line integral $\int grad(x+y-z) d\vec{r}$ from (0, 1, -1) to (1, 2, 0) is

Options:

- 3 1.
- $_{2}$ -1
- 0
- , 1

Question id: 2128 Question Type: MCQ

The necessary and sufficient condition for $\int_{\mathcal{C}} \mathbf{A}$. $\mathrm{d}\vec{r}$ = 0 for every closed curve C is that

Options:

- div **A** = 0
- curl **A** = 0
- $_{3.}$ div $\mathbf{A} \neq 0$
- 4 curl **A** ≠ 0

Question id: 2129 Question Type: MCQ

Let She a closed orientable surface enclosing a unit volume. They the magnitude of the

surface integral $\iint \vec{r} \cdot \hat{n}$ ds, where $\vec{r} = x\hat{\imath} + y\hat{\imath} + z\hat{k}$ and \hat{n} is unit normal vector to the surface S is equal to

Options:

, 1

, 2

3

4

Question id: 2130 Question Type: MCQ

A vector function \vec{F} is said to solenoidal if

Options:

Curl $\vec{F} = 0$

grad $\vec{F} = 0$

 $_{3.}\operatorname{div}\vec{F}=0$

 $curl (curl \vec{F}) = 0$

Question id: 2131 Question Type: MCQ

The matrix A has eigen values $\lambda_i \neq 0$, then $A^{-1} - 2I + A$ has eigen values

Options:

$$\frac{1}{\lambda_i} - 2 + \lambda_i$$

$$\frac{1+2\lambda_i+\lambda_1^2}{2}$$

$$\int_{3.} 1 - 2\lambda_1 + \lambda_i^2$$

$$1 - \frac{2}{\lambda_i} + \frac{1}{\lambda_i^2}$$

Question id: 2132 Question Type: MCQ

If A is singular hermitian matrix, then the least eigen value of A2 is

Options:

_ -1

2. 1

2

3.

, (

Question id: 2133 Question Type: MCQ

If f(x) = 0 is an algebraic equation then Newton-Raphson method is given by

$$x_{n+1} = x_n - \frac{f(x_n)}{\lambda}$$
, where λ is

Options:

$$f(x_{n-1})$$

$$_{2}$$
 $f'(x_n)$

$$_{3.}f'(x_{n-2})$$

$$f''(x_n)$$

Question id: 2134 Question Type: MCQ

The order of convergence of Newton-Raphson method is

Options:

- 0
- 2. 1
- , 2
- 3

Question id: 2135 Question Type: MCQ

The second divided difference of $y = x^2$ is

Options:

- 2
- . 1
- 2
- 2*x*

Question id: 2136 Question Type: MCQ

The divided difference f $(x_{0,}x_{1,}x_{2})$ is equal to

$$\frac{\Delta^2 f_0}{h^2}$$

$$\Delta f_0$$

$$3. \frac{\Delta^2 f_0}{2h^2}$$

$$\Delta f_0$$

Question id: 2137 Question Type: MCQ

The divided difference $_{x_1}^{\Delta}(x_0)=f(x_0,x_1)$ is equal to

Options:

$$f(x_1) - f(x_0)$$

$$x_1 - x_0$$

$$f(x_1) - f(x_0)$$

$$x_1 - x_0$$

$$f(x_1)-f(x_0)$$

$$x_0 - x_1$$

Question id: 2138 Question Type: MCQ

Simpson's rule is used to evaluate the integral $\int_0^1 \frac{2x}{1+x^2} dx$. If $h=\frac{1}{2}$ is used, then its value is

Options:

- log 2

- 2. $\frac{1}{2}$ 7
 3. $\frac{1}{10}$
- 4. 10

Question id: 2139 Question Type: MCQ

Simpson's $\frac{3}{8}$ rule is a special case of Newton-cotes quadrature formula when n is equal to

Options:

1. 6

3

2.

3. 2

1

Question id: 2140 Question Type: MCQ

If Δ is forward difference operator and ∇ is backward difference operator, then $\ \Delta\nabla$ is equal to

Options:

- . ∇Δ
- **∇+**Δ
- _{3.} ∇−Δ
- Δ

Question id: 2141 Question Type: MCQ

$$\frac{\Delta}{\nabla} - \frac{\nabla}{\Delta}$$
 is equal to

Options:

- _{1.} ∇-Δ
- _{2.}∇
- 3
- _{4.} ∇+Δ

Question id: 2142 Question Type: MCQ Runge-Kutta fourth order method is

Options:

- a single step method
- 2. double step method
- multiple step method
- predicator-corrector method

Question id: 2143 Question Type: MCQ

If
$$u = \frac{x^{\frac{1}{4} + y^{\frac{1}{4}}}}{x^{\frac{1}{5} + y^{\frac{1}{5}}}}$$
, then $x^{\frac{\partial u}{\partial x}} + y^{\frac{\partial u}{\partial y}}$ is equal to

Ontions .

Options:

- 4*u*
- _{2.} 5*u*
- _{3.} 20u
- $\frac{1}{20}u$

Question id: 2144 Question Type: MCQ

$$\int_{C} \frac{dz}{z+2}$$
; C: |z| =1 is

Options:

- 2πi
- $-2\pi i$
- , (
- _{4.} 4πi

Question id: 2145 Question Type: MCQ

$$\int_{c} \frac{dz}{z^{2}-2z}$$
, C: $|z-2| = 1$ is

Options:

- $-\pi i$
- $_2$. πi
- $_{3.}$ $2\pi i$
- 4 0

Question id: 2146 Question Type: MCQ

The function $(z-1) \sin \frac{1}{z}$ at z=0 has

- A removable singularity
- 2. A simple pole
- 3. An essential singularity
- A multiple pole
- 0 " 11 44 # 0 " 7 3 500

Question id: 2147 Question Type: MCQ

The residue at z = 0 of the function $f(z) = z^2 \sin \frac{1}{z}$ is

Options:

- 2. 3

Question id: 2148 Question Type: MCQ

For the function $f(\Xi) = \frac{\varpi - \sin \varpi}{\varpi^3}$, $\Xi = 0$ is

Options:

removable singularity

- simple pole
- pole of order 3
- essential singularity

Question id: 2149 Question Type: MCQ

Let f(z) be an analytic function. Then the value of the integral $\int_0^{2\pi} f(e^{it}) \cos t \, dt$ equals

Options:

- 1.0
- $2\pi f(0)$
- $_{3.}$ $2\pi f'(0)$
- $_{4.}$ $\pi f'(0)$

Question id: 2150 Question Type: MCQ

Which of the following mappings are not conformal at z = 0

- 1. ez
- cosz

 $_3$ $\sin z$

$$z^{2} + z$$

Question id: 2151 Question Type: MCQ

Let $\{e_1, e_2, ..., e_n\}$ be a finite orthonormal set in a Hilbert space H. If x is any vector in H then

Options:

$$\sum_{i=1}^{n} |(x, e_i)|^2 \le ||x||^2 \text{ and } x - \sum_{i=1}^{n} (x, e_i) e_i \perp e_j$$

$$\sum_{i=1}^{n} |(x, e_i)|^2 \ge ||x||^2 \text{ and } x - \sum_{i=1}^{n} (x, e_i) e_i \perp e_j$$

$$\sum_{i=1}^{n} |(x, e_i)|^2 \le ||x||^2 \text{ and } x + \sum_{i=1}^{n} (x, e_i) e_i \perp e_j$$

$$\sum_{i=1}^{n} |(x, e_i)|^2 \le ||x||^2 \text{ and } \sum_{i=1}^{n} (x, e_i) e_i \perp e_j$$

Question id: 2152 Question Type: MCQ

Laplace transform of $t^n e^{-at}$ is

Options:

$$\frac{n!}{(s+a)^n}$$

$$2. \frac{(n+1)!}{(s+a)^n}$$

3.
$$\frac{n!}{(s+a)^{n+1}}$$

4.
$$\frac{(n+1)!}{(s+a)^{n+1}}$$

Question id: 2153 Question Type: MCQ

Laplace transform of u(t-a), where u is a unit step function is

Question id: 2154 Question Type: MCQ

Inverse Laplace transform of $\frac{1}{s(s^2+1)}$ is equal to

Options:

Question id: 2155 Question Type: MCQ

Inverse Laplace transform of 1 is

Options:

Question id: 2156 Question Type: MCQ

If
$$L^{-1}\{f(s)\} = F(t)$$
, $L^{-1}\{g(s)\} = G(t)$, then $L^{-1}\{f(s), g(s)\}$ is given by

Options:

$$\int_0^t F(u)G(t-u)du$$

$$\int_0^\infty F(u)G(t-u)du$$

$$\int_0^\infty F(t)G(u-t)dt$$

$$\int_0^t F(u)G(u)du$$

Question id: 2157 Question Type: MCQ

If Laplace transform of $J_0(t)$ is

$$\frac{1}{s(s+1)}$$

$$\frac{1}{\sqrt{1+s^2}}$$

$$\begin{array}{c}
1 \\
2. \overline{\sqrt{1+s^2}} \\
1 - \overline{1 \over \sqrt{1+s^2}} \\
3. \end{array}$$

Question id: 2158 Question Type: MCQ

The Laplace transform of the function f (t) = $\begin{cases} 1, & 0 \le t < 2 \\ -1, & 2 \le t < 4 \end{cases}$; f(t+4) = f(t) is given by

Options:

$$\frac{1-e^{-2s}}{s(1+e^{-2s})}$$

$$\frac{1+e^{-2S}}{s(1+e^{-2S})}$$

Question id: 2159 Question Type: MCQ

The sum of the series $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$ is equal to

Options:

2.
$$\frac{\pi^2}{8}$$
3. $\frac{\pi^2}{12}$
4. $\frac{\pi^2}{4}$

$$\pi^2$$

Question id: 2160 Question Type: MCQ

The equation
$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2}$$
 is

Options:

1. Parabolic

2. Elliptic

, Hyperbolic

Both Parabolic and Hyperbolic

Question id: 2161 Question Type: MCQ

One dimensional wave equation is

Options:

$$\frac{\partial^2 y}{\partial t^2} = \frac{\partial y}{\partial x}$$

$$\int_{2}^{\frac{\partial^{2} y}{\partial t^{2}}} = c^{2} \frac{\partial^{2} y}{\partial x^{2}}$$

$$\int_{0}^{\frac{\partial y}{\partial t}} = c^2 \frac{\partial^2 y}{\partial x^2}$$

$$\frac{\partial y}{\partial t} = c^2 \frac{\partial y}{\partial x}$$

Question id: 2162 Question Type: MCQ

Two dimensional heat flow equation is

Options:

$$\frac{\partial u}{\partial t} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

$$\int_{2}^{\frac{\partial^{2} u}{\partial t^{2}}} = c^{2} \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} \right)$$

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} \right)$$

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} \right)$$

Question id: 2163 Question Type: MCQ

The solution of heat equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ is

$$(c_1e^{px}+c_2e^{-px})e^{-p^2t}$$

$$u = (c_1 + c_2 x)e^{-p^2 t}$$

$$u = (c_1 \cos px + c_2 \sin px) e^{-p^2 t}$$

$$u = (c_1 e^{px} + c_2 e^{-px}) e^{p^2 t}$$

Question id: 2164 Question Type: MCQ

Assume a single channel service system of a library in a school. From past experience, it is known that on an average every hour 8 students come for issue of books at an average rate of 10 per hour. The probability that there are at least 3 students in system is

Options:

- 0.64
- 2. 0.512
- 0.4096
- 0.8

Question id: 2165 Question Type: MCQ

At a garage, car owners arrive at the rate of 6 per hour and are served at the rate of 8 per hour. If the arrival follow Poisson's distribution and the service pattern is exponentially distributed, the average waiting time is

Options:

- 25 min
- ₂ 30 min
- 20 min
- 4. 40 min

Question id: 2166 Question Type: MCQ

In a quadratic programming which one is correct?

Options:

- All constraints are quadratic
- 2. At least one constraint is quadratic
- Objective function and at least one constraint is quadratic
- Objective function is quadratic and all constraints are linear

Question id: 2167 Question Type: MCQ

The flow of heat in a temperature field is given by $\frac{x}{y}$. Then the direction of flow of heat at the point (8, -1) is

Options:

 $\hat{i} + 8\hat{i}$

1.

$$_2$$
 $-\hat{\imath}-8\hat{\jmath}$

$$_{3.}$$
 $\hat{\imath}-8\hat{\jmath}$

$$-\hat{\imath} + 8\hat{\jmath}$$

Question id: 2168 Question Type: MCQ

If
$$\vec{v} = e^x(\cos y \hat{\imath} + \sin y \hat{\jmath})$$
, then div \vec{v} is

Options:

$$e^x \sin y$$

$$_{3}$$
 $2e^{x}\cos y$

, (

Question id: 2169 Question Type: MCQ

The velocity field of a rigid body is given by $\vec{v} = y \, \hat{\imath} - x \, \hat{\jmath}$. The angular velocity of the body is

Options:

$$_{1}$$
 2 \hat{k}

$$\frac{1}{2}$$
 $-2 \hat{k}$

 \hat{k}

$$_{4}-\hat{k}$$

Question id: 2170 Question Type: MCQ

If $\vec{v} = 2y\vec{i} + 5x\vec{j}$, then curl \vec{v} is equal to

Options:

$$2\vec{k}$$

$$_{2.}$$
 $\overrightarrow{3k}$

$$3.5\vec{k}$$

$$_{4.}$$
 $7\vec{k}$

Question id: 2171 Question Type: MCQ

Let $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$, $u(0,y) = e^{-5y}$, then the value of u(x,y) is

Options:

$$1.e^{2x-5y}$$

$$e^{-2x-5y}$$

$$_{3.}e^{3x-5y}$$

$$e^{-3x-5y}$$

Question id: 2172 Question Type: MCQ

The polar form of the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ is

Options:

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial^2 u}{\partial \theta^2} + \frac{1}{r^2} \frac{\partial u}{\partial r} = 0$$

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial^2 u}{\partial \theta^2} = 0$$

$$\frac{\partial^2 u}{\partial \theta^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

Question id: 2173 Question Type: MCQ

The torsion of the curve $r(t) = a \cos t \ \hat{\imath} + b \sin t \ \hat{\jmath}$ is

Options:

$$\sqrt{a^2 + b^2}$$

Question id: 2174 Question Type: MCQ

The directional derivative of $f(x, y, z) = 2x^2 + 3y^2 + z^2$ at P (2, 1, 3) in the direction of the vector $\vec{a} = \hat{\imath} - 2\hat{k}$ is

$$\frac{20}{\sqrt{5}}$$

1.

$$\frac{4}{\sqrt{5}}$$

$$-\frac{4}{\sqrt{5}}$$

$$-\frac{20}{\sqrt{5}}$$

Question id: 2175 Question Type: MCQ

The unit normal vector of the cone of revolution $z^2 = 4(x^2 + y^2)$ at the point P (1, 0, 2) is

Options:

$$-\frac{2}{\sqrt{5}}\hat{\imath}-\frac{1}{\sqrt{5}}\hat{\jmath}$$

$$\frac{2}{\sqrt{5}}\,\hat{\boldsymbol{\imath}} - \frac{1}{\sqrt{5}}\,\hat{\boldsymbol{\jmath}}$$

$$\frac{3}{\sqrt{5}}\,\hat{\imath}+\frac{3}{\sqrt{5}}\,\hat{\jmath}$$

$$\frac{3}{4} \cdot \frac{3}{\sqrt{5}} \, \hat{\imath} - \frac{3}{\sqrt{5}} \, \hat{\jmath}$$

Question id: 2176 Question Type: MCQ

The radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} (z-3i)^n$ is

Options:

- 1 3
- 3
- 1
- 4

Question id: 2177 Question Type: MCQ

Tangential acceleration and normal acceleration of a particle whose motion is given by $r(t) = 5t^2\hat{k}$ are respectively

$$10\hat{k}, 0$$

$$_{2}-10\hat{k},0$$

 $0,10\hat{k}$

 $_{4.}$ 0, $-10\hat{k}$

Question id: 2178 Question Type: MCQ

The curvature of the curve $\vec{r}(t) = a \cos t \, \hat{\imath} + a \sin t \, \hat{\jmath} + ct \, \hat{k}$ is

Options:

$$\frac{a}{1. a^2 + c^2}$$

2.
$$a^2+c^2$$

$$\sqrt{a^2+c^2}$$

$$\sqrt{a^2+c^2}$$

Question id: 2179 Question Type: MCQ

A steel bar of 10 mm diameter and 1 m long was subjected to an axial load of 10 KN. Its diameter was found to decrease by 0.002 mm. Its lateral strain is

Options:

0.02

_ - 0.02

_{3.} 0.0002

 $_{4} - 0.0002$

Question id: 2180 Question Type: MCQ

A steel wire of length 1 m is kept vertically by putting a load of 1 N. Its length increases by 3 mm. The longitudinal strain of wire is

Options:

- 1. 0.0003
- 2. 0.003
- 3. 0.3
- 0.0015

Question id: 2181 Question Type: MCQ

Which one of the following is not correct for Laplace transformation of f'''(t) where Laplace transformation of f(t) is F(S). (Question Cancelled)

$$s^3F(s) + s^2f(0) + sf'(0) + f''(0)$$

$$_{2} s^{3}F(s) + s^{2}f''(0) + sf'(0) + f(0)$$

$$s^3F(s) - s^2f''(0) - sf'(0) - f(0)$$

4.
$$s^3F(s) - s^2f(0) - sf'(0) - f''(0)$$

Question id: 2182 Question Type: MCQ

Let the set (P,≤) is partially ordered set. Which of the following is not a criterion for partially ordered relation?

Options:

- Reflexivity
- Symmetry
- Anti symmetry
- Transitivity

Question id: 2183 Question Type: MCQ

Let P be a projection on a Banach space B and M, N are its range and null space. Which of the following is true?

Options:

- M and N are open sub spaces of B
- M is open and N is closed sub space of B
- M and N are closed sub spaces of B
- M is closed and N is open sub space of B.

Question id: 2184 Question Type: MCQ

If $\{e_i\}$ is an orthonormal set in a Hilbert space H_o . If x is any vector in H then the set $S=\{e_i: (x,e_i) \neq 0\}$ is

Options:

- always empty set
- always finite set
- either empty or finite set
- either empty or countable set

Question id: 2185 Question Type: MCQ

A metric space is compact if and only if it is

Options:

complete

totally bounded

complete and totally bounded 3.

complete and bounded

Question id: 2186 Question Type: MCQ

A wrong decision about null hypothesis H_o leads to

Options:

one kind of error

two kinds of error

three kinds of error

four kinds of error

Question id: 2187 Question Type: MCQ

For testing H_o : $\mu = \mu_o$ against H_1 : $\mu < \mu_o$, the critical region for $\infty = 0.05$ is (sample size being large)

Options:

| IZI ≤ 1.96

_{2.} IZ I> 1.96

Z < -1.645

_{4.} Z > 1.645

Question id: 2188 Question Type: MCQ

If there are r rows and s columns in a two-way analysis of variance, then the number of degrees of freedom between rows is

Options:

1. (8-1)

$$(r-1)$$

3 7

8

Question id: 2189 Question Type: MCQ

In a two way analysis of variance, the total variation is decomposed into

Options:

- two components
- three components
- four components
- eight components

Question id: 2190 Question Type: MCQ

Let X is a normal variable with mean 100 and variance 25. If X is converted into standard normal variable then $P(30 \le X \le 80)$ is same as

Options:

- P(-14 < Z <-4)
- $_{2}$ P(-1 4Z < 4)
- _{3.} P(-2.8 < Z <-0.8)
- $_{4.}$ P(-2.8 < Z < 0.8)

Question id: 2191 Question Type: MCQ

The standard deviation of the binomial distribution is

Options:

- np
- npq
- \sqrt{np}
- \sqrt{npq}

Question id: 2192 Question Type: MCQ

A and B start a game of throwing a die. The one who first gets Head wins the game. If A starts the game, what is probability of winning of B.

- 1 2
- 1. 3
- 1
- 2. 2
 - 2

3. 3

4

Question id: 2193 Question Type: MCQ

The upper control limit and lower control limit for drawing a mean chart are

Options:

$$= + \sigma_{\bar{x}}, = -\sigma_{\bar{x}}$$

$$\frac{1}{x} + 2 \sigma_{\bar{x}}, \frac{1}{x} - 2 \sigma_{\bar{x}}$$

$$\frac{1}{3} + 3 \sigma_{\bar{x}}, \frac{1}{x} - 3 \sigma_{\bar{x}}$$

$$\frac{=}{4} + 4 \sigma_{\bar{x}}, \frac{=}{x} - 4 \sigma_{\bar{x}}$$

Question id: 2194 Question Type: MCQ

The upper and lower control limits of R-chart are given by

Options:

$$\overline{X} + 2A_2\overline{R}, \ \overline{X} - 2A_2\overline{R}$$

$$_{2}$$
 $\overline{X} + A_{2}\overline{R}$, $\overline{X} - A_{2}\overline{R}$

$$_{3}\overline{R}+2A_{2}\overline{X}, \overline{R}-2A_{2}\overline{X}$$

$$_{4}\overline{R}+A_{2}\overline{X}, \overline{R}-A_{2}\overline{X}$$

Question id: 2195 Question Type: MCQ

15 samples with size 100 each taken at an interval of 45 minutes form a manufacturing process. The average fraction defective was 0.05. The upper and lower control limits are.

Options:

$$\frac{10+3\sqrt{19}}{200}$$
, $\frac{10-3\sqrt{19}}{200}$

$$2. \frac{10 + 2\sqrt{19}}{200}, \frac{10 - 2\sqrt{19}}{200}$$

$$\frac{5+3\sqrt{19}}{200}, \frac{5-3\sqrt{19}}{200}$$

$$\frac{5+2\sqrt{19}}{200}$$
, $\frac{5-2\sqrt{19}}{200}$

Question id: 2196 Question Type: MCQ

If $\frac{dy}{dx} = 1 + xy$, when $x_0 = 0$, $y_0 = 1$, using Picard method, its solution up to second

approximation is (Question Cancelled)

Options:

$$x + \frac{x^2}{2}$$

$$x + \frac{x^2}{2}$$

$$4. x + \frac{x^3}{3}$$

Question id: 2197 Question Type: MCQ

If P(A) = 0.7, P(B) = 0.6, $P(A \cap B) = 0.5$, the value of P(B/A) is

Options:

- 1. 7
- 2. 6

4. 13

Question id: 2198 Question Type: MCQ

For the given joint probability distribution, the Expected value of X i.e., E(X) Is

XY	-4	2	7
1	1	1	1
	8	4	8
5	1	1	1
8	4	8	8

Options:

- 1. 2
- 3
- 3.

Ouestion id: 2199 Ouestion Type: MCO

For the given joint probability distribution, the expected value of Y i.e., E(Y) is

XY	-4	2	7
1	1	1	1
	8	4	8
5	1	1	1
	4	8	8

Options:

6.5

Question id: 2200 Question Type: MCQ

> Let f(x) have the respective Fourier cosine and sine transforms as $F_c(w)$ and $F_s(w)$. Then which of the following is not true? (Question Cancelled)

$$\mathcal{F}_{c}\{\cos(ax) f(x)\} = \frac{1}{2} [F_{c}(w+a) + F_{c}(w-a)]$$

$$\mathcal{F}_{c}\{\sin(ax) f(x)\} = \frac{1}{2} [F_{s}(w+a) + F_{s}(a-w)]$$
2.

$$\mathcal{F}_{c}\{\sin(ax)f(x)\} = \frac{1}{2}[F_{s}(w+a) + F_{s}(a-w)]$$

$$\mathcal{F}_{s}\{\cos(ax) f(x)\} = \frac{1}{2} [F_{s}(w+a) + F_{s}(w-a)]$$
3.
4.
$$\mathcal{F}_{s}\{\sin(ax) f(x)\} = \frac{1}{2} [F_{c}(w-a) - F_{c}(w+a)]$$

$$\frac{3}{4} \Re \{ \sin(ax) f(x) \} = \frac{1}{2} [F_c(w-a) - F_c(w+a)]$$