

## सूचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकड्नन लगेच बदलून घ्यावी.
(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

(3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
(4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचविली असून त्यांना $1,2,3$ आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेत्रमाणे तुमच्च्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्वाकरिता फक्त काळया शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
(5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुले चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुठील प्रश्नांकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
(6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
(7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच 'उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील'.

## ताकीद

छा प्रश्नपत्रिकेसाठी आयोगाने विह्तित केलेली वेळ संपेपर्यतत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देग्यात येत आहे. ही वेळ संपेपर्यत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंघा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाज्या व्यक्तीवर शासनाने जारी केलेल्या "परीक्षांमध्ये होणान्या गैर्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82" यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या करावासाच्या आणि/किंघा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
तसेच घ्रा प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी ष्यक्ती आयोगाच्या कर्मचारीवृंदापेकी, तसेच परीक्षेच्या पर्यकेक्षकीयपृंदपेकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल क्द्दोषी व्यक्ती शिक्षेस पात्र होईल.


1. In the determination of Ca with AAS , interferences occur due to formation of refractory oxides $\mathrm{CaO} . \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{CaO} . \mathrm{SiO}_{3}$. It can be eliminated by
a. Changing air-acetylene flame to nitrous-oxide-acytlene flame
b. Decreasing oxygen concentrations
c. Adding of a releasing agent
d. Using fuel-rich flame
(1) a and b only
(2) a and c only
(3) a and d only
(4) $a, b, c$ and d
2. Iron (III) is best determined by uv- visible spectroscopy with
(1) Thiocyanate
(2) Acetate
(3) Cyanide
(4) Dimethylglyoxime
3. In the AAS, $\mathrm{Ne}^{\oplus}$ gaseous ions bombarded the cathode (Hollow Cathode Lamp) and eject metal atoms from cathode, The process is referred to as
(1) Sputtering
(2) Ejectoning
(3) Excitation
(4) Ionisation
4. Moment of nuclei is negligible during the time taken by an electronic transition. It is called
(1) Franck-Condon principle
(2) Born-Oppenheimer approximation
(3) Lambert-Beer's law
(4) None of the above
5. In flame photometry the negative deviation from the straight line are observed because of
(1) high concentration
(2) low concentration
(3) does not depend on concentration
(4) high temperature
6. In some spectrophotometers a prism is used with a grating which have the following advantage(s)
(1) It gives double dispersion and reduces stray light
(2) It eliminates maximum light
(3) It reduces red light
(4) All of the above
7. In uv-visible spectroscopy, for optimum dispersion, the slits should be put
(1) as far as possible
(2) as near as possible
(3) anywhere near each other
(4) None of the above
8. In scanning electron microscopy the electrons in the beam interact with the sample and give information about the surface $\qquad$ and $\qquad$ .
(1) topography, morphology
(2) topography, monography
(3) polarography, sampling
(4) None of these
9. The emission spectroscopy is useful because
(1) It is extremely sensitive
(2) It is very specific
(3) It is sensitive as well as specific
(4) It is neither sensitive nor specific
10. Scanning Transmission Electron Microscope (STEMS) can be used for studies of particulate and thin foil having beam of diameter as small as
(1) 1 nm
(2) 2 nm
(3) 3 nm
(4) 4 nm
11. The emission spectra are of
(1) Two types
(2) Single type
(3) Three types
(4) Four types
12. Match the following :
a. Polarography
I. $\quad \mathrm{N}_{2}$ gas
b. Supporting Electrolyte
II. Triton X-100
c. Oxygen is removed
III. KCl
d. Maxima Suppressor
IV. Jaroslav Heyrovsky'

|  | a | b | c | d |
| :--- | :--- | :--- | :--- | :--- |
| (1) | I | II | IV | III |
| (2) | II | I | III | IV |
| (3) | III | IV | II | I |
| (4) | IV | III | I | II |

## कचच्या कामासाठी जागा / SPACE FOR ROUGH WORK

13. In polarography the equation

$$
607 \mathrm{n}^{1 / 2} \mathrm{C} \mathrm{~m}^{2 / 3} \mathrm{t}^{1 / 6}\left\{1+\mathrm{A} \frac{\mathrm{D}^{1 / 2} \mathrm{t}^{1 / 6}}{\mathrm{~m}^{1 / 3}}\right\}
$$

Solution Electrode Correction
factor factor factor
is known as
(1) Lingane and Loveridge equation
(2) Ilkovic equation
(3) Heyrovsky' equation
(4) None of these
14. In amperometry the potential applied between the indicator electrode and reference electrode is
(1) changed slowly
(2) changed rapidly
(3) kept constant
(4) None of these
15. In the amperometric titrations, which one is the best example of using rotating platinum electrode
(1) Nickel with DMG
(2) Lead with dichromate ion
(3) Arsenite by $\mathrm{KBrO}_{3}$
(4) $\mathrm{Cu}, \mathrm{Co}, \mathrm{Pt}$ with $\alpha$-nitroso- $\beta$-naphthol
16. In the voltammetry technique following are the statements:
a. It is based on the potential-current behaviour of unpolarisable electrode in analyte.
b. In which potential of the micro-working electrode is varied and the resulting current is recorded.
c. Where, cathodic current is positive and anodic current is negative.
d. If the analyte solution is dilute, the current will reach a limiting value.

Which of the above statements is/are correct?
(1) a only
(2) $a, b$ and conly
(3) b, c and d only
(4) a, c and d only
17. In stripping voltammetry analysis of solution in the range of $\qquad$ to $\qquad$ is possible.
(1) $10^{-6}$ to $10^{-9} \mathrm{M}$
(2) $10^{-4}$ to $10^{-11} \mathrm{M}$
(3) $10^{-3}$ to $10^{-10} \mathrm{M}$
(4) $10^{-9}$ to $10^{-12} \mathrm{M}$
18. The most important requirement/s for electro gravimetric analysis is/are
a. The deposition of the substance of interest must be complete.
b. The deposit must be inert i.e. it may not undergo any change in its weight during the process of electrolysis.
c. The deposit must be of known composition.
d. The deposit must adhere firmly so that the electrode can be rised and weighted without loss.

Which of the above statements is/are correct?
(1) a only
(2) a and b only
(3) a, c and d only
(4) All of the above
19. In the voltammetry technique, substance from analyte reduced or oxidised at a micro-electrode is said to be
(1) depolariser
(2) polariser
(3) semi-polariser
(4) None of these
20. In the determination of copper by electrogravimetry, when solution is electrolysed with an emf 2-3 volts; then the following reactions occur :

- $\mathrm{Cu}^{2 \oplus}+2 \mathrm{e}^{\ominus} \rightleftharpoons \mathrm{Cu} ; 2 \mathrm{H}^{\oplus}+2 \mathrm{e}^{\ominus} \rightleftharpoons \mathrm{H}_{2}$
- $4 \mathrm{OH}^{\ominus} \rightleftharpoons \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{\ominus}$

Which ions go for reduction and deposited?
(1) $\mathrm{Cu}^{\oplus}$
(2) $\mathrm{H}^{\oplus}$
(3) $\mathrm{Cu}^{2 \oplus}$ and $\mathrm{H}^{\oplus}$
(4) None of the above
21. Cyclic voltammetry can be applied to $\qquad$ electrode as well as to $\qquad$ mercury drop and to reaction for which stripping analysis is $\qquad$ due to
$\qquad$ irreversible electrode process.
(1) stationary, single, inapplicable, highly
(2) moving, single, applicable, slowly
(3) stationary, double, inapplicable, highly
(4) moving, double, applicable, slowly
22. Electromagnetic radiation is characterised by
(1) Amplitude
(2) Periodicity
(3) Wavelength and wave number of frequency
(4) All of the above
23. The region of greatest importance for emission analysis is
(1) $200+300 \mathrm{~nm}$
(2) $200+500 \mathrm{~nm}$
(3) $250+400 \mathrm{~nm}$
(4) $400+600 \mathrm{~nm}$
24. In amperometry either the titrant (reagent) or the species being titrated should be
(1) Radioactive
(2) Photoactive
(3) Electroactive
(4) Gas sensitive
25. The polarographic method may be used for the determination of which of the following inorganic anions?
(1) Cyanide
(2) Bromide
(3) Dichromate
(4) All of the above
26. The sampling of gas filled cylinder is done by
(1) Stack sampling
(2) Flushing sampling
(3) Ambient sampling
(4) Random sampling
27. The retention factor for a particular solute depends upon
(1) Stationary phase
(2) Mobile phase
(3) Both (1) and (2)
(4) None of these
28. Which one of the following is a limitations of HPTLC ?
(1) It requires an internal standard
(2) It is not useful in herbal analysis
(3) It cannot be fully automated
(4) The mobile phase consumptions of sample is high
29. TLC is a separation technique based on
(1) Solubility
(2) Adsorption
(3) Partition
(4) Fractional distillation
30. Which of the following statements about preamplifier, IF amplifier and RF amplifier is wrong?
(1) The outputs of IF and RF amplifiers are adjustable
(2) A preamplifier is located near or inside a probe
(3) They are all frequency tunable amplifiers
(4) RF amplifier has a linear dependence of attenuation
31. How many signals will diethyl ether give in PMR spectra?
(1) One
(2) Two
(3) Three
(4) Four
32. The absence of double band at about $2800 \mathrm{~cm}^{-1}$ in the IR spectrum of unknown organic compound eliminates from consideration the possibility of the
(1) acetophenone
(2) aldehyde
(3) ketone
(4) ester
33. When a molecule absorbs uv or visible light of frequency $v$ or wavelength $\lambda$, an electron undergoes a transition from a lower to a higher energy level. The energy difference $\Delta E$ is given by
(1) $\Delta \mathrm{E}=\mathrm{h} v$
(2) $\Delta \mathrm{E}=\mathrm{hc} v$
(3) $\Delta \mathrm{E}=\frac{1}{2} \mathrm{mv}^{2}$
(4) $\Delta E=\frac{c}{\lambda}$
34. In uv, visible spectroscopy of organic compound, the $n-\sigma^{*}$ electronic transition which arises in saturated compounds containing the hetero atoms $\mathrm{S}, \mathrm{N}, \mathrm{Br}$ and I is of less importance because
(1) They are inactive
(2) Their absorption is just above 700 nm
(3) Their absorption is just below 200 nm
(4) The bond ruptures
35. In uv-visible spectrum, the term auxochrome is used to designate groups possessing
(1) bonding electron pairs conjugated with a $\pi$-bond system.
(2) non-bonding electrons pairs conjugated with a $\pi$-bond system.
(3) bonding electron pair conjugated with a $\sigma$ bond system.
(4) non-bonding electron pair conjugated with a $\sigma$-bond system.
36. The strength of Earth's magnetic field is about $\qquad$ gauss.
(1) 0.10
(2) 0.57
(3) 0.23
(4) 0.37
37. The $\qquad$ shift is the position of an absorption peak relative to that of a reference compound (usually TMS).
(1) red
(2) blue
(3) chemical
(4) red and blue
38. In $\qquad$ NMR spectral determination, mostly carbon tetrachloride and deuterochloroform are used as solvents for dissolving the samples.
(1) ${ }^{1} \mathrm{H}$
(2) ${ }^{13} \mathrm{C}$
(3) ${ }^{15} \mathrm{~N}$
(4) ${ }^{19} \mathrm{~F}$
39. In $\qquad$ analysis, gas chromatograph separates the components of the mixture while the mass spectrometer gives the structural information via fragmentation.
(1) GC
(2) MS
(3) GC - MS
(4) Chemical
40. The loss of an alkene fragement by a cyclic rearrangement of a carbonyl compound with $\qquad$ hydrogens is termed as MCL afferty rearrangement.
(1) $\alpha$
(2) $\beta$
(3) $\gamma$
(4) $\delta$
41. If an organic compound is not absorbed in uv radiations, it means that it does not contain
(1) Sigma bond
(2) Single bond
(3) Dative bond
(4) Conjugate double bond
42. Which of the following quantities is not changed at a different magnetic field strength?
(1) Chemical shift (in Hertz)
(2) Nucleus spin population in an energy state
(3) Coupling constant (J)
(4) Energy difference between two energy states of nuclei with non-zero spin quantum number
43. The base ion peak at $\mathrm{m} / \mathrm{z}-43$ in the mass spectrum is due to the loss of
(1) Methoxy group
(2) Carbonyl group
(3) Methyl group
(4) Acetyl group
44. Which proton readily exchanges with deuterium?
(1) Aldehydic proton
(2) Hydrocarbon proton
(3) Aromatic ring proton
(4) Hydroxyl proton
45. $\qquad$ is used as a reference standard in NMR spectroscopy.
(1) Tetramethylsilane
(2) Trimethylsilane
(3) Dimethyl Sulphone
(4) Dimethyl Sulphoxide
46. In mass spectrometry, the molecular rearrangements, the most frequently encountered example is the McLafferty rearrangement which involves the transfer of
(1) $\alpha$ - H atom in an unsaturated system via a low energy six-membered transition state
(2) N -atom in aldehyde system
(3) $\beta$-hydrogen atom in an unsaturated system
(4) $\gamma$-H atom in an unsaturated system
47. How many signals will be obtained in the PMR spectra of propan-2-ol?
(1) One
(2) Two
(3) Three
(4) Four
48. In NMR spectroscopy, in every sample, a small amount of $\qquad$ is added as a reference.
(1) Dimethylformamide
(2) Dimethyl sulfoxide
(3) Tetramethylsilane
(4) Tetramethyl silanol
49. The peak of highest intensity in a mass spectrum is referred to as the
(1) Front peak
(2) Base peak
(3) Molecular peak
(4) Back peak
50. In NMR spectroscopy the tau scale value is
(1) $\tau=10-\sigma$
(2) $\tau=10-\beta$
(3) $\tau=10-\delta$
(4) $\tau=10-\gamma$
51. Which of the following is the Henderson -Hasselbalch equation?
(1) $\mathrm{pH}=\mathrm{pKa}+\log \frac{\text { [acid] }}{[\text { salt }]}$
(2) $\mathrm{pH}=\frac{\mathrm{pKw}}{\mathrm{pOH}}$
(3) $\mathrm{pH}=\frac{\mathrm{pOH}}{\mathrm{pKw}}$
(4) $\mathrm{pH}=\mathrm{pKa}+\log \frac{[\text { salt }]}{[\text { acid }]}$
52. Which serological technique utilises competition between radioisotope labelled antigen and test antigen for detection?
(1) Flow cytometry
(2) Immunoelectrophoresis
(3) Radioimmuno assay
(4) Immunofluorescence assay
53. To identify an individual on the basis of DNA analysis of the blood, investigators look for
(1) RNA primers
(2) DNA fingerprints
(3) DNA probes
(4) nucleosomes
54. The buffering capacity of a buffer is maximum at pH equal to $\qquad$ of a weak acid used in the preparation of the buffer.
(1) 2 pKa
(2) pKa
(3) $\mathrm{pKa}+1$
(4) $\mathrm{pKa}-1$
55. The specific palindrome sequence and site of cleavage identified by restriction endonuclease EcoRI is
(1) $G^{\downarrow}$ AATTC
(2) $\mathrm{A}^{\downarrow}$ AGCTT
(3) $\mathrm{GTT}^{\downarrow} \mathrm{AAC}$
(4) $\mathrm{C}^{\downarrow}$ AATGC
56. Isoenzymes are enzymes that
(1) Catalyse the same reaction
(2) Do not catalyse the same reaction
(3) Have same $K_{m}$ and $V_{\text {max }}$
(4) Have identical amino acid composition and sequence
57. Okazaki fragments are synthesized by DNA polymerase during
(1) DNA replication
(2) Translation
(3) Cloning
(4) Transcription
58. The heat stable isozyme of alkaline phosphatase, which is inhibited by phenyl alanine and is characteristically seen in the circulation of cases of carcinoma of lung, liver and gut is named as
(1) Leukocyte alkaline phosphatase
(2) Beta isozyme
(3) Regan isoenzyme
(4) Pre-beta alkaline phosphatase
59. Which key feature of Taq polymerase allows PCR to be conveniently performed ?
(1) Taq polymerase does not require primers.
(2) Taq polymerase does not require templates.
(3) Taq polymerase is heat stable.
(4) Taq polymerase can work at very low temperatures.
60. In liver disease the elevated serum LDH is primarily due to increase in
(1) LDH - 1 and LDH - 2
(2) LDH - 2 and LDH - 3
(3) LDH - 3 and LDH - 4
(4) LDH - 4 and LDH - 5
61. In radioimmunoassay, the commonly used gamma emitter radioisotope label with half-life of about 60 days is
(1) ${ }^{3} \mathrm{H}$
(2) ${ }^{125} \mathrm{I}$
(3) ${ }^{131} \mathrm{I}$
(4) ${ }^{57} \mathrm{Co}$
62. The $\mathrm{K}_{\mathrm{m}}$ of an enzyme is
(1) one half of $V_{\max }$
(2) a dissociation constant
(3) the substrate concentration at half the maximal velocity
(4) the substrate concentration at the maximal velocity
63. DNA fingerprinting is based on
(1) Non-repetitive sequence
(2) Sequence polymorphism
(3) Constant tandem repeats
(4) Variable number tandem repeats
64. The most suitable traditional method of quantitative assay for pure protein is based on reaction of aromatic amino acids with phospho-tungstic acid is
(1) Micro-Kjeldahl method
(2) Nephalometric method
(3) Folin-Ciocalteu (Lowry) method
(4) Folin-Wu method
65. The degree of unsaturation in a lipid is measured by
(1) Saponification number
(2) Iodine number
(3) Acid number
(4) Reichert-Meissl number
66. In reverse transcriptase PCR method (RT-PCR), the DNA polymerase that has both polymerase and reverse transcriptase activities at high temperature, is obtained from.
(1) Escherichia coli (Korenberg's enzyme)
(2) Thermus aquaticus
(3) Thermus termophilus
(4) Haemophilus influenzae (Rd)
67. The buffer which is used for nucleic acids separation and typically contains EDTA, has low ionic strength and pH range of $7.5-7.8$ is
(1) Phosphate buffer
(2) Acetate buffer
(3) Barbitone buffer
(4) Tris-Phosphate buffer
68. What is the role of sodium dodecyl sulphate (SDS) in SDS-PAGE ?
(1) Protein unfolding
(2) Imparting net positive charge to the protein
(3) Imparting equal mass to all proteins
(4) Protein denaturing and imparting net negative charge to the protein
69. Which of the following techniques is used for the detection of Restriction Fragment Length Polymorphism (RFLPs)?
(1) Northern blotting
(2) Southern blotting
(3) Western blotting
(4) Eastern blotting
70. Proteins when heated with concentrated nitric acid give a yellow colour and when NaOH is added, deep orange colour is obtained. This test is known as
(1) Xanthoproteic test
(2) Hoppe's test
(3) Acid-base test
(4) Biuret test
71. Prenatal diagnosis is a wide array of genetic diseases is best done by
(1) PCR
(2) Linkage analysis
(3) RFLP
(4) Cytometry
72. Which of the following is required for DNA synthesis but not for RNA synthesis ?
(1) Nucleotides
(2) Sugar
(3) Polymerase
(4) Primer
73. Which of the following seperation techniques depends on the molecular size of the protein?
(1) ISO electric focussing
(2) Gel filtration chromatography
(3) Ion-exchange chromatography
(4) Affinity chromatography
74. $\qquad$ method is used for quantitation of the viruses present in a sample (for example viral load in HIV or HBV), which would help in planning of the treatment modalities and assessment of the response to the treatment.
(1) Nested PCR
(2) Real Time PCR
(3) RACE- PCR
(4) Multiplex- PCR
75. The most efficient buffer system in blood plasma, accounting for $65 \%$ of buffering capacity in plasma and $40 \%$ in the whole body, that regulate pH between $7.35-7.45$ is
(1) Hemoglobin buffer
(2) Protein buffer
(3) Bicarbonate buffer
(4) Acetate buffer
76. The solubility product of barium sulphate at 298 K is $1 \cdot 1 \times 10^{-10}$. Which one of the following cases, on mixing equal volumes of two solutions at 298 K , shall precipitate barium sulphate?
(1) $1 \cdot 1 \times 10^{-5} \mathrm{M}$ barium nitrate and $1 \cdot 1 \times 10^{-6} \mathrm{M}$ sulphuric acid
(2) $1.1 \times 10^{-3} \mathrm{M}$ barium chloride and $1.1 \times 10^{-8} \mathrm{M}$ sodium sulphate
(3) $1.1 \times 10^{-5} \mathrm{M}$ barium nitrate and $1.1 \times 10^{-5} \mathrm{M}$ potassium sulphate
(4) None of these
77. Calculate the number of moles of $\mathrm{H}_{2} \mathrm{O}$ produced per mole of magnesium :

$$
\mathrm{Mg}+\mathrm{HNO}_{3} \longrightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NH}_{4} \mathrm{NO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

(1) $\frac{3}{4}$
(2) $\frac{4}{3}$
(3) 1
(4) None of these
78. The correct statements among the following are :
a. The alkali salts are largely adsorbed by the porous charcoal.
b. The oxides of noble metals eg. Ag are decomposed without the aid of charcoal to the metal, which is often obtained as a globule, and oxygen.
c. The oxides of $\mathrm{Pb}, \mathrm{Cu}$ are reduced to a fused metallic globule.
d. The oxides of $\mathrm{Zn}, \mathrm{Cd}$ are readily reduced to the metal, but these are so volatile that they vaporize.
(1) a, c and d only
(2) a b b and conly
(3) b, c and d only
(4) All of the above
79. $800 \mathrm{~cm}^{3}$ of ozonised oxygen at NTP were passed through potassium iodide solution. The iodine liberated required $200 \mathrm{~cm}^{3}$ of 0.1 N sodium thiosulphate for titration. Calculate the percent volume of ozone in the mixture.
$\mathrm{O}=16, \mathrm{~K}=39, \mathrm{Na}=23, \mathrm{~S}=32, \mathrm{I}=127$
(1) $14 \%$
(2) $56 \%$
(3) $28 \%$
(4) None of these
80. Match the following Flame tests (List I) with Colouration observed through cobalt glass (List II) :

## List I

a. Sodium
b. Potassium
c. Strontium
d. Barium

## List II

I. Bluish green
II. Purple
III. Crimson
IV. Golden yellow
V. No colour
VI. Apple green

|  | a | b | c | d |
| :--- | :--- | :--- | :--- | :--- |
| (1) | IV | III | II | VI |
| (2) | IV | II | III | VI |
| (3) | V | III | II | I |
| (4) | II | IV | I | V |

81. The volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is the volume of $\mathrm{O}_{2}$ in $\mathrm{cm}^{3}$ evolved at NTP on complete decomposition of $1 \mathrm{~cm}^{3}$ of the $\mathrm{H}_{2} \mathrm{O}_{2}$ solution. $25 \mathrm{~cm}^{3}$ of $\qquad$ volume $\mathrm{H}_{2} \mathrm{O}_{2}$ solution would decolourize $100 \mathrm{~cm}^{3}$ of $0 \cdot 25 \mathrm{~N}$ acidified $\mathrm{KMnO}_{4}$ solution. ( $\mathrm{H}=1, \mathrm{O}=16$ )
(1) $5 \cdot 6$
(2) 6.5
(3) 25
(4) 100
82. $10 \mathrm{~cm}^{3}$ of the solution containing a mixture of oxalic acid and potassium oxalate is titrated against 0.1 N NaOH . At exactly $5.0 \mathrm{~cm}^{3}$, the phenolphthalein indicator in the solution became pink. $25 \mathrm{~cm}^{3}$ of the same solution containing oxalic acid and potassium oxalate is heated with $25 \mathrm{~cm}^{3}$ of dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$. The hot solution is titrated against $0 \cdot 1 \mathrm{~N} \mathrm{KMnO}_{4}$ solution. Exactly at $20 \mathrm{~cm}^{3}$, the $\mathrm{KMnO}_{4}$ drop was decolorized. The amount of oxalic acid and potassium oxalate in $500 \mathrm{~cm}^{3}$ of the solution is
$\qquad$ and $\qquad$ respectively.
( $\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16, \mathrm{~K}=39$ )
(1) $1.80 \mathrm{~g}, 1.66 \mathrm{~g}$
(2) $3.60 \mathrm{~g}, 3.32 \mathrm{~g}$
(3) $1.80 \mathrm{~g}, 3.32 \mathrm{~g}$
(4) $3.6 \mathrm{~g}, 1.66 \mathrm{~g}$
83. $25 \mathrm{~cm}^{3}$ of aqueous solution with 0.1 M with reference to a substance is equilibrated with $10 \mathrm{~cm}^{3}$ of ether. At equilibrium the aqueous layer contained 0.5 millimol of the substance. Calculate the percent extraction.
(1) $97 \cdot 50 \%$
(2) $80 \%$
(3) $95 \cdot 25 \%$
(4) None of these
84. Borax bead test is performed in an oxidizing flame : Match the columns :

|  | Hot |  | Cold |  |
| :--- | :--- | :--- | :--- | :--- |
| a. | Green |  | Blue |  |
| b. | Yellow |  | Green |  |
| c. | Violet | Reddish brown |  |  |
| d. | Blue |  | Blue |  |
|  | a | b | c | d |
| (1) | I | III | IV | II |
| (2) | II | I | IV | III |
| (3) | IV | I | III | II |
| (4) | IV | I | II | III |

85. Calculate the pH of 0.01 M sodium phenoxide at 298 K .
$k_{w}=10^{-14}$, ionisation constant of phenol $=10^{-10}$
(1) 11
(2) 12
(3) 3
(4) 2
86. Using $\mathrm{K}_{2} \mathrm{SO}_{4}, 250 \mathrm{~cm}^{3}$ of solution which is 1.92 ppm with respect to sulphate ion is prepared, the molarity of the solution with respect to the solute is
( $\mathrm{K}=39, \mathrm{~S}=32, \mathrm{O}=16$ )
(1) $8 \times 10^{-5} \mathrm{M}$
(2) $2 \times 10^{-5} \mathrm{M}$
(3) $5 \times 10^{-6} \mathrm{M}$
(4) None of these
87. 1.2 g of pure magnesium is treated with excess of hot concentrated sulphuric acid. The weight of the gas evolved is $\qquad$ g. By taking all required care the salt formed during the process is allowed to crystallize, filtered, washed and dried. The weight of the crystalline product is $\qquad$ g.
( $\mathrm{Mg}=24, \mathrm{H}=1, \mathrm{O}=16, \delta=32$ )
(1) $0.1 \mathrm{~g}, 12 \cdot 3 \mathrm{~g}$
(2) $0 \cdot 1 \mathrm{~g}, 6 \mathrm{~g}$
(3) $3 \cdot 2 \mathrm{~g}, 12 \cdot 3 \mathrm{~g}$
(4) None of these
88. $\quad 100 \mathrm{~cm}^{3}$ of 0.1 M acetic acid $\left(\mathrm{k}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$ at 298 K is treated against 0.1 M NaOH . The pH of the solution on addition of (a) $40 \mathrm{~cm}^{3}$ of 0.1 M NaOH , and (b) $60 \mathrm{~cm}^{3}$ of 0.1 M NaOH is respectively $\qquad$ and $\qquad$ .
(1) $4 \cdot 564,5 \cdot 920$
(2) $3.564,3.920$
(3) $4.564,4.920$
(4) None of these
89. With reference to co-precipitation, select the correct statement from the following :
a. Surface adsorption and mixed crystal formation are equilibrium processes.
b. Occlusion and mechanical entrapment arise from the kinetics of crystal growth.
c. Contamination of a precipitate by a second substance whose solubility product has been exceeded causes co-precipitation.
d. It affects purity which can be easily detected.
(1) a only
(2) b only
(3) a and b only
(4) a, b, c and d
90. Select the correct statement from the following:
a. When relative supersaturation is large, the precipitate tends to be colloidal.
b. When relative supersaturation is large, a crystalline solid is formed.
c. If nucleation predominates, a large number of fine particles are produced.
(1) a only
(2) b only
(3) a and conly
(4) b and c only
91. Calmagite is a/an
a. ore of calcium
b. precipitating agent for calcium
c. protolytic indicator
d. metallochromic indicator
(1) a only
(2) b and c only
(3) c only
(4) d only
92. For dissolution and digestion of inorganic species of biological samples, which of the following technique(s) is employed?
a. Microwave assisted digestion
b. High pressure digestion
c. Dry and wet ashing
d. Use of ion-pair forming agent
(1) a only
(2) a and b only
(3) a, b and c only
(4) a, b and d only
93. Select the correct statement from the following :

For the gross sample
a. Mass ' $m$ ' is proportional to the number of particles.
b. Degree of heterogeneity is not influenced by the number of particles.
c. In Gamell's sampling, constant ' $\mathrm{k}_{\mathrm{s}}$ ' is equal to mass if percentage relative standard deviation is $1 \%$.
d. The number of particles required in gross sample ranges from few particles to $10^{12}$ particles.
(1) a and b only
(2) $a, b$ and c only
(3) a, c and d only
(4) b and d only
94. 105 mg of impure sample of calcium carbonate (containing impurity inert to acid) when treated with $0.05 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$, exactly at $40 \mathrm{~cm}^{3}$, the effervescence ceased. The percent purity of the sample is $\qquad$ $\%$.
(1) $95 \cdot 24$
(2) $94 \cdot 76$
(3) 90.00
(4) $99 \cdot 00$
95. 54 mg of pure aluminium (27) is treated with $100 \mathrm{~cm}^{3}$ of $0.05 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$, the maximum volume of the gas evolved at NTP is $\qquad$ $\mathrm{cm}^{3}$.
(1) 112
(2) 56
(3) $67 \cdot 2$
(4) None of these
96. For the conversion of $\mathrm{Al}^{3+}$ to aluminium hydroxide precipitate, the preferred set of reagent is
(1) NaOH only
(2) $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$ only
(3) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$ only
(4) All of these
97. In qualitative analysis, the ion/s that could be precipitated in more than one group is/are
(1) $\mathrm{Pb}^{2+}$ only
(2) $\mathrm{Mn}^{2+}$ only
(3) Both $\mathrm{Pb}^{2+}$ as well as $\mathrm{Mn}^{2+}$
(4) Neither $\mathrm{Pb}^{2+}$ nor $\mathrm{Mn}^{2+}$
98. $\quad 100 \mathrm{~cm}^{3}$ of 0.2 M HCl is mixed with $400 \mathrm{~cm}^{3}$ of $0.45 \mathrm{M} \mathrm{HNO}_{3}$. Assuming there is no change in the volume on mixing, the pH of the resultant solution is approximately
(1) 0.4
(2) 0.6
(3) 0.8
(4) None of these
99. Calculate the concentration of $\mathrm{Ni}^{2+}$ ion in solution that was prepared by mixing $50 \mathrm{~cm}^{3}$ of $0.03 \mathrm{M} \mathrm{Ni}^{2+}$ with $50 \mathrm{~cm}^{3}$ of 0.05 M EDTA. The mixture is buffered at $\mathrm{pH}=3$. The equilibrium constant of the reaction : $\mathrm{Ni}^{2+}+\mathrm{EDTA}^{4-} \rightleftharpoons \mathrm{Ni} \mathrm{EDTA}^{2-}$ is $1.05 \times 10^{8}$.
(1) $1.4 \times 10^{-8}$
(2) $1.4 \times 10^{8}$
(3) $0.02 \times 10^{-8}$
(4) None of these
100. What is the pH of the solution obtained by mixing equal volumes of solution of $\mathrm{pH}=1$ and $\mathrm{pH}=3$ ? [Temperature 298 K ]
(1) 0.71
(2) 2
(3) $1 \cdot 296$
(4) None of these

## LOGARITHMS

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean DMfferences |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 10 | 0000 | 0043 | 0086 | 0128 | 0170 | 0212 | 0253 | 0294 | 0334 | 0374 | 4 | 8 | 12 | 17 | 21 | 25 | 29 | 33 | 37 |
| 11 | 0414 | 0453 | 0492 | 0531 | 0569 | 0607 | 0645 | 0682 | 0719 | 0755 | 4 | 8 | 11 | 15 | 19 | 23 | 26 | 30 | 34 |
| 12 | 0792 | 0828 | 0864 | 0899 | 0934 | 0969 | 1004 | 1038 | 1072 | 1106 | 3 | 7 | 10 | 14 | 17 | 21 | 24 | 28 | 31 |
| 13 | 1139 | 1173 | 1206 | 1239 | 1271 | 1303 | 1335 | 1367 | 1399 | 1430 | 3 | 6 | 10 | 13 | 16 | 19 | 23 | 26 | 29 |
| 14 | 1461 | 1492 | 1523 | 1553 | 1584 | 1614 | 1644 | 1673 | 1703 | 1732 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 |
| 15 | 1761 | 1790 | 1818 | 1847 | 1875 | 1903 | 1931 | 1959 | 1987 | 2014 | 3 | 6 | 8 | 11 | 14 | 17 | 20 | 22 | 25 |
| 16 | 2041 | 2068 | 2095 | 2122 | 2148 | 2175 | 2201 | 2227 | 2253 | 2279 | 3 | 5 | 8 | 11 | 13 | 16 | 18 | 21 | 24 |
| 17 | 2304 | 2330 | 2355 | 2380 | 2405 | 2430 | 2455 | 2480 | 2504 | 2529 | 2 | 5 | 7 | 10 | 12 | 15 | 17 | 20 | 22 |
| 18 | 2553 | 2577 | 2601 | 2625 | 2648 | 2672 | 2695 | 2718 | 2742 | 2765 | 2 | 5 | 7 | 9 | 12 | 14 | 16 | 19 | 21 |
| 19 | 2788 | 2810 | 2833 | 2856 | 2878 | 2900 | 2923 | 2945 | 2967 | 2989 | 2 | 4 | 7 | 9 | 11 | 13 | 16 | 18 | 20 |
| 20 | 3010 | 3032 | 3054 | 3075 | 3096 | 3118 | 3139 | 3160 | 3181 | 3201 | 2 | 4 | 6 | 8 | 11 | 13 | 15 | 17 | 19 |
| 21 | 3222 | 3243 | 3263 | 3284 | 3304 | 3324 | 3345 | 3365 | 3385 | 3404 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 |
| 22 | 3424 | 3444 | 3464 | 3483 | 3502 | 3522 | 3541 | 3560 | 3579 | 3598 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 15 | 17 |
| 23 | 3617 | 3636 | 3655 | 3674 | 3692 | 3711 | 3729 | 3747 | 3766 | 3784 | 2 | 4 | 6 | 7 | 9 | 11 | 13 | 15 | 17 |
| 24 | 3802 | 3820 | 3838 | 3856 | 3874 | 3892 | 3909 | 3927 | 3945 | 3962 | 2 | 4 | 5 | 7 | 9 | 11 | 12 | 14 | 16 |
| 25 | 3979 | 3997 | 4014 | 4031 | 4048 | 4065 | 4082 | 4099 | 4116 | 4133 | 2 | 3 | 5 | 7 | 9 | 10 | 12 | 14 | 15 |
| 26 | 4150 | 4166 | 4183 | 4200 | 4216 | 4232 | 4249 | 4265 | 4281 | 4298 | 2 | 3 | 5 | 7 | 8 | 10 | 11 | 13 | 15 |
| 27 | 4314 | 4330 | 4346 | 4362 | 4378 | 4393 | 4409 | 4425 | 4440 | 4456 | 2 | 3 | 5 | 6 | 8 | 9 | 11 | 13 | 14 |
| 28 | 4472 | 4487 | 4502 | 4518 | 4533 | 4548 | 4564 | 4579 | 4594 | 4609 | 2 | 3 | 5 | 6 | 8 | 9 | 11 | . 12 | 14 |
| 29 | 4624 | 4639 | 4654 | 4669 | 4683 | 4698 | 4713 | 4728 | 4742 | 4757 | 1 | 3 | 4 | 6 | 7 | 9 | 10 | 12 | 13 |
| 30 | 4771 | 4786 | 4800 | 4814 | 4829 | 4843 | 4857 | 4871 | 4886 | 4900 | 1 | 3 | 4 | 6 | 7 | 9 | 10 | 11 | 13 |
| 31 | 4914 | 4928 | 4942 | 4955 | 4969 | 4983 | 4997 | 5011 | 5024 | 5038 | 1 | 3 | 4 | 6 | 7 | 8 | 10 | 11 | 12 |
| 32 | 5051 | 5065 | 5079 | 5092 | 5105 | 5119 | 5132 | 5145 | 5159 | 5172 | 1 | 3 | 4 | 5 | 7 | 8 | 9 | 11 | 12 |
| 33 | 5185 | 5198 | 5211 | 5224 | 5237 | 5250 | 5263 | 5276 | 5289 | 5302 | 1 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 12 |
| 34 | 5315 | 5328 | 5740 | 5353 | 5366 | 5378 | 5391 | 5403 | 5416 | 5428 | 1 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 |
| 35 | 5441 | 5453 | 3465 | 5478 | 5490 | 5502 | 5514 | 5527 | 5539 | 5551 | 1 | 2 | 4 | 5 | 6 | 7 | 9 | 10 | 11 |
| 36 | 5563 | 5575 | 5587 | 5599. | 5611 | 5623 | 5635 | 5647 | 5658 | 5670 | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 10 | 11 |
| 37 | 5682 | 5694 | 5705 | 5717 | 5729 | 5740 | 5752 | 5763 | 5775 | 5786 | 1 | 2 | , | 5 | 6 | 7 | 8 | 9 | 10 |
| 38 | 5798 | 5809 | 5821 | 5832 | 5843 | 5855 | 5866 | 5877 | 5888 | 5899 | 1 | , | 3 | 5 | * | ? | 8 | 9 | 10 |
| 39 | 5911 | 5922 | 5933 | 5944 | 5955 | 5966 | 5977 | 5988 | 5999 | 6010 | 1 | 2 | 3 | 4 | 5 | 1 | 8 | 9 | 10 |
| 40 | 6021 | 6031 | 6042 | 6053 | 6064 | 6075 | 6085 | 6096 | 6107 | 6117 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 |
| 41 | 6128 | 6138 | 6149 | 6160 | 6170 | 6180 | 6191 | 6201 | 6212 | 6222 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 42 | 6232 | 6243 | 6253 | 6263 | 6274 | 6284 | 6294 | 6304 | 6314 | 6325 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 43 | 6335 | 6345 | 6355 | 6365 | 6375 | 6385 | 6395 | 6405 | 6415 | 6425 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 44 | 6435 | 6444 | 6454 | 6464 | 6474 | 6484 | 6493 | 6503 | 6513 | 6522 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 45 | 6532 | 6542 | 6551 | 6561 | 6571 | 6580 | 6590 | 6599 | 6609 | 6618 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 46 | 6628 | 6637 | 6646 | 6656 | 6665 | 6675 | 6684 | 6693 | 6702 | 6712 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 7 | 8 |
| 47 | 6721 | 6730 | 6739 | 6749 | 6758 | 6767 | 6776 | 6785 | 6794 | 6803 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 |
| 48 | 6812 | 6821 | 6830 | 6839 | 6848 | 6857 | 6866 | 6875 | 6884 | 6893 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 |
| 49 | 6902 | 6911 | 6920 | 6928 | 6937 | 6946 | 6955 | 6964 | 6972 | 6981 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 |
| 50 | 6990 | 6998 | 7007 | 7016 | 7024 | 7033 | 7042 | 7050 | 7059 | 7067 | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 |

## कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

LOGARITHMS

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean Differences |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 51 | 7076 | 7084 | 7093 | 710I | 7110 | 7118 | 7126 | 7135 | 7143 | 7152 |  | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 |
| 52 | 7160 | 7168 | 7177 | 7185 | 7193 | 7202 | 7210 | 7218 | 7226 | 7235 |  | 2 | 2 | 3 | 4 | 5 | 6 | 7 | 7 |
| 53 | 7243 | 7251 | 7259 | 7267 | 7275 | 7284 | 7292 | 7300 | 7308 | 7316 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 7 |
| 54 | 7324 | 7332 | 7340 | 7348 | 7356 | 7364 | 7372 | 7380 | 7388 | 7396 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 7 |
| 55 | 7404 | 7412 | 7419 | 7427 | 7435 | 7443 | 7451 | 7459 | 7466 | 7474 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 7 |
| 56 | 7482 | 7490 | 7497 | 7505 | 7513 | 7520 | 7528 | 7536 | 7543 | 7551 |  | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 7 |
| 57 | 7559 | 7566 | 7574 | 7582 | 7589 | 7597 | 7604 | 7612 | 7619 | 7627 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 7 |
| 58 | 7634 | 7642 | 7649 | 7657 | 7664 | 7672 | 7679 | 7686 | 7694 | 7701 | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 |
| 59 | 7709 | 7716 | 7723 | 7731 | 7738 | 7745 | 7752 | 7760 | 7767 | 7774 | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 |
| 60 | 7782 | 7789 | 7796 | 7803 | 7810 | 7818 | 7825 | 7832 | 7839 | 7846 | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 6 |
| 61 | 7853 | 7860 | 7868 | 7875 | 7882 | 7889 | 7896 | 7903 | 7910 | 7917 |  | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 6 |
| 62 | 7924 | 7931 | 7938 | 7945 | 7952 | 7959 | 7966 | 7973 | 7980 | 7987 | 1 | . 1 | 2 | 3 | 3 | 4 | 5 | 6 | 6 |
| 63 | 7993 | 8000 | 8007 | 8014 | 8021 | 8028 | 8035 | 8041 | 8048 | 8055 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| 64 | 8062 | 8069 | 8075 | 8082 | 8089 | 8096 | 8102 | 8109 | 8116 | 8122 |  | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| 65 | 8129 | 8136 | 8142 | 8149 | 8156 | 8162 | 8169 | 8176 | 8182 | 8189 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| 66 | 8195 | 8202 | 8209 | 8215 | 8222 | 8228 | 8235 | 8241 | 8248 | 8254 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| 67 | 8261 | 8267 | 8274 | 8280 | 8287 | 8293 | 8299 | 8306 | 8312 | 8319 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| 68 | 8325 | 8331 | 8338 | 8344 | ¢ 351 | 8357 | 8363 | 8370 | 8376 | 8382 | 1 | 1 | 2 | 3 | 3 | 4 | 4 | 5 | 6 |
| 69 | 8388 | 8395 | 8401 | 8407 | 8414 | 8420 | 8426 | 8432 | 8439 | 8445 | 1 | 1 | . 2 | 2 | 3 | 4 | 4 | 5 | 6 |
| 70 | 8451 | 8457 | 8463 | 8470 | 8476 | 8482 | 8488 | 8494 | 8500 | 8506 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 6 |
| 71 | 8513 | 8519 | 8525 | 8531 | 8537 | 8543 | 8549 | 8555 | 8561 | 8567 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 |
| 72 | 8573 | 8579 | 8585 | 8591 | 8597 | 8603 | 8609 | 8615 | 8621 | 8627 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 |
| 73 | 8633 | 8639 | 8645 | 8651 | 8657 | 8663 | 8669 | 8675 | 8681 | 8686 | 1 | 1 | , | 2 | 3 | 4 | 4 | 5 | 5 |
| 74 | 8692 | 8698 | 8704 | 8710 | 8716 | 8722 | 8727. | 8733 | 8739 | 8745 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 |
| 75 | 8751 | 8756 | 8762 | 8768 | 8774 | 8779 | 8785 | 8791 | 8797 | 8802 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 5 |
| 76 | 8808 | 88 | 8820 | 8825 | 8831 | 8837 | 8842 | 88 | 88 | 85 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 5 |
| 77 | 8865 | 8871 | 8876 | 8882 | 8887 | 8893 | 8899 | 8904 | 8910 | 8915 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| 78 | 8921 | 8927 | 8932 | 8938 | 8943 | 8949 | 8954 | 8960 | 8965 | 8971 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| 79 | 8976 | 8982 | 8987 | 8993 | 8998 | 9004 | 9009 | 9015 | 9020 | 9025 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| 80 | 9031 | 9036 | 9042 | 9047 | 9053 | 9058 | 9063 | 9069 | 9074 | 9079 | 1 | 1 |  |  | , | 3 | 4 | 4 | 5 |
| 81 | 9085 | 9090 | 9096 | 9101 | 9106 | 9112 | 9117 | 9122 | 9128 | 9133 |  | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| 82 | 9138 | 9143 | 9149 | 9154 | 9159 | 9165 | 9170 | 9175 | 9180 | 9186 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| 83 | 9191 | 9196 | 9201 | 9206 | 9217 | 9217 | 9222 | 9227 | 9232 | 9238 | 1 | 1 | 2 |  | - | - | 4 | 4 | 5 |
| 84 | 9243 | 9248 | 9253 | 9258 | 9263 | 9269 | 9274 | 9279 | 9284 | 9289 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| 85 | 9294 | 9299 | 9304 | 9360 | 9315 | 9320 | 9325 | 9330 | 9335 | 9340 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| 86 | 9345 | 9350 | 9355 | 9360 | 9365 | 9370 | 9375 | 9380 | 9385 | 9390 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| 87 | 9395 | 9400 | 9405 | 9410 | 9415 | 9420 | 9425 | 9430 | 9435 | 9440 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 88 | 9445 | 9450 | 9455 | 9460 | 9465 | 9469 | 9474 | 9479 | 9484 | 9489 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 89 | 9494 | 9499 | 9504 | 9509 | 9513 | 9518 | 9523 | 9528 | 9533 | 9538 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 90 | 9542 | 9547 | 9552 | 9557 | 9562 | 9566 | 9571 | 9576 | 9581 | 9586 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 91 | 9590 | 9595 | 9600 | 9605 | 9609 | 9614 | 9619 | 9624 | 9628 | 9633 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 92 | 9638 | 9643 | 9647 | 9652 | 9657 | 9661 | 9666 | 9671 | 9675 | 9680 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 93 | 9685 | 9689 | 9694 | 9699 | 9703 | 9708. | 9713 | 9717 | 9722 | 9727 | 0 | 1 | 1 | 2 |  | 3 | 3 | 4 | 4 |
| 94 | 9731 | 9736 | 9741 | 9745 | 9750 | 9754 | 9759 | 9763 | 9768 | 9773 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 95 | 9777 | 9782 | 9786 | 97 | 97 | 9800 | 9805 | 9809 | 98 | 18 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 96 | 9823 | 9827 | 9832 | 9836 | 9841 | 9845 | 9850 | 98.54 | 9859 | 9863 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 97 | 9868 | 9872 | 9877 | 9881 | 9886 | 9890 | 9894 | 9899 | 9903 | 9908 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 98 | 9912 | 9916 | 9921 | 9926 | 9930 | 9934 | 9939 | 9943 | 9948 | 9952 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 99 | 9956 | 9961 | 9965 | 9969 | 9974 | 9978 | 9983 | 9987 | 9991 | 9996 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 4 |

ANTILOGARITHMS

|  |  |  |  |  |  |  |  |  |  |  | Mean Differences |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| . 00 | 1000 | 1002 | 1005 | 1007 | 1009 | 1012 | 1014 | 1016 | 1019 | 1021 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
| . 01 | 1023 | 1026 | 1028 | 1030 | 1033 | 1035 | 1038 | 1040 | 1042 | 1045 | 0 | 0 | 1 |  | 1 | 1 | 2 | 2 | 2 |
| .02 | 1047 | 1050 | 1052 | 1054 | 1057 | 1059 | 1062 | 1064 | 1067 | 1069 | 0 | 0 | 1 |  | 1 | 1 | 2 | 2 | 2 |
| . 03 | 1072 | 1074 | 1076 | 1079 | 1081 | 1084 | 1086 | 1089 | 1091 | 1094 | 0 | 0 | 1 |  | 1 | 1 | 2 | 2 | 2 |
| . 04 | 1096 | 1099 | 1102 | 1104 | 1107 | 1109 | 1112 | 1114 | 1117 | 1119 | 0 | 1 | 1 |  | 1 | 2 | 2 | 2 | 2 |
| . 05 | 1122 | 1125 | 1127 | 1130 | 1132 | 1135 | 1138 | 1140 | 1143 | 1146 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| . 06 | 1148 | 1151 | 1153 | 1156 | ! 1.59 | 1161 | 1164 | 1167 | 1169 | 1172 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| . 07 | 1175 | 1178 | 1180 | 1183 | 1186 | 1189 | 1191 | 1194 | 1197 | 1199 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| . 08 | 1202 | 1205 | 1208 | 1211 | 1213 | 1216 | 1219 | 1222 | 1225 | 1227 | 0 | 1 | 1 |  | 1 | 2 | 2 | 2 | 3 |
| . 09 | 1230 | 1233 | 1236 | 1239 | 1242 | 1245 | 1247 | 1250 | 1253 | 1256 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 |
| . 10 | 1259 | 1262 | 1265 | 1268 | 1271 | 1274 | 1276 | 1279 | 1282 | - 1285 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 |
| . 11 | 1288 | 1291 | 1294 | 1297 | 1300 | 1303 | 1306 | 1309 | 1312 | 1315 | 0 | 1 | 1 |  | 2 | 2 | 2 | 2 | 3 |
| . 12 | 1318 | 1321 | 1324 | 1327 | 1330 | 1334 | 1337 | 1340 | 1343 | 1346 | 0 | 1 | 1 |  | 2 | 2 | 2 | 2 | 3 |
| . 13 | 1349 | 1352 | 1355 | 1358 | 1361 | 1365 | 1368 | 1371 | 1374 | 1377 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
| . 14 | 1380 | 1384 | 1387 | 1390 | 1393 | 1396 | 1400 | 1403 | 1406 | 1409 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
| . 15 | 1413 | 1416 | 1419 | 1422 | 1426 | 1429 | 1432 | 1435 | 1439 | 1442 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
| . 16 | 1445 | 1449 | 1452 | 1455 | 1459 | 1462 | 1466 | 1469 | 1472 | 1476 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
| . 17 | 1479 | 1483 | 1486 | 1489 | 1493 | 1496 | 1500 | 1503 | 1507 | 1510 | 0 | 1. | 1. | 1 | 2 | 2 | 2 | 3 | 3. |
| . 18 | 1514 | 1517 | 1521 | 1524 | 1528 | 1531 | 1535 | 1538 | 1542 | 1545 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
| . 19 | 1549 | 1552 | 1556 | 1560 | 1563 | 1567 | 1570 | 1574 | 1578 | 1581 | 0 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 |
| . 20 | 1585 | 1589 | 1592 | 1596 | 1600 | 1603 | 1607 | 1611 | 1614 | 1618 | 0 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 |
| . 21 | 1622 | 1626 | 1629 | 1633 | 1637 | 1641 | 1644 | 1648 | 1652 | 1656 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 |
| . 22 | 1660 | 1663 | 1667 | 1671 | 1675 | 1679 | 1683 | 1687 | 1690 | 1694 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 |
| . 23 | 1698 | 1702 | 1706 | 1710 | 1714 | 1718 | 1722 | 1726 | 1730 | 1734 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 |
| . 24 | 1738 | 1742 | 1746 | 1750 | 1754 | 1758 | 1762 | 1766 | 1770 | 1774 | 0 |  | 1 | 2 | 2 | 2 | 3 | 3 | 4 |
| . 25 | 1778 | 1782 | 1786 | 1791 | 1795 | 1798 | 1803 | 1807 | 1811 | 1816 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 |
| . 26 | 1820 | 1824 | 1828 | 1832 | 1837 | 1841 | 1845 | 1849 | 1854 | 1858 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 4 |
| . 27 | 1862 | 1866 | 1871 | 1875 | 1879 | 1884 | 1888 | 1892 | 1897 | 1901 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 4 |
| . 28 | 1905 | 1910 | 1914 | 1919 | 1923 | 1928 | 1932 | 1936 | 1941 | 1945 | 0 | 1 | 1 | 2 | 2 | 3 | . 3 | 4 | 4 |
| . 29 | 1950 | 1954 | 1959 | 1963 | 1968 | 1972 | 1977 | 1982 | 1986 | 1991 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| . 30 | 1995 | 2000 | 2004 | 2009 | 2014 | 2018 | 2023 | 2028 | 2032 | 2037 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| . 31 | 2042 | 2046 | 2051 | 2056 | 2061 | 2065 | 2070 | 2075 | 2080 | 2084 | 0 |  | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| . 32 | 2089 | 2094 | 2099 | 2104 | 2109 | 2113 | 2118 | 2123 | 2128 | 2133 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| . 33 | 2138 | 2143 | 2148 | 2153 | 2158 | 2163 | 2168 | 2173 | 2178 | 2183 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| . 34 | 2188 | 2193 | 2198 | 2203 | 2208 | 2213 | 2218 | 2223 | 2228 | 2234 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| . 35 | 2239 | 2244 | 2249 | 2254 | 2259 | 2265 | 2270 | 2275 | 2280 | 2286 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| . 36 | 2291 | 2296 | 2301 | 2307 | 2312 | 2317 | 2323 | 2328 | 2333 | 2339 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| 37 | 2344 | 2350 | 2355 | 2360 | 2366 | 2371 | 2377 | 2382 | 2388 | 2393 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| . 38 | 2399 | 2404 | 2410 | 2415 | 2421 | 2427 | 2432 | 2438 | 2443 | 2449 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| . 39 | 2455 | 2460 | 2466 | 2472 | 2477 | 2483 | 2489 | 2495 | 2500 | 2506 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 5 |
| . 40 | 2512 | 2518 | 2523 | 2529 | 2535 | 2541 | 2547 | 2553 | 2559 | 2564 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 |
| . 41 | 2570 | 2576 | 2582 | 2588 | 2594 | 2600 | 2606 | 2612 | 2618 | 2624 | 1 |  | 2 | 2 | 3 | 4 | 4 | 5 | 5 |
| . 42 | 2630 | 2636 | 2642 | 2649 | 2655 | 2661 | 2667 | 2673 | 2679 | 2685 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 6 |
| . 43 | 2692 | 2698 | 2704 | 2710 | 2716 | 2723 | 2729 | 2735 | 2742 | 2748 | 1 | 1 | 2 | 3 | 3 | 4 | 4 | 5 | 6 |
| 44 | 2754 | 2761 | 2767 | 2773 | 2780 | 2786 | 2793 | 2799 | 2805 | 2812 | 1 | 1 | 2 | 3 | 3 | 4 | 4 | 5 | 6 |
| . 45 | 2818 | 2825 | 2831 | 2838 | 2844 | 2851 | 2858 | 2864 | 2871 | 2877 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| . 46 | 2884 | 2891 | 2897 | 2904 | 2911 | 2917 | 2924 | 2931 | 2938 | 2944 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| . 47 | 2951 | 2958 | 2965 | 2972 | 2979. | 2985 | 2992 | 2999 | 3006 | 3013 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| . 48 | 3020 | 3027 | 3034 | 3041 | 3048 | 3055 | 3062 | 3069 | 3076 | 3083 | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 6 |
| . 49 | 3090 | 3097 | 3105 | 3112 | 3119 | 3126 | 3133 | 3141 | 3148 | 3155 | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 6 |
| . 50 | 3162 | 3170 | 3177 | 3184 | 3192 | 3199 | 3206 | 3214 | 3221 | 3228 | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 |

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

ANTILOGARITHMS

|  |  |  |  |  |  |  |  |  |  |  | Mean Differences |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| . 51 | 3236 | 3243 | 3251 | 3258 | 3266 | 3273 | 3281 | 3289 | 3296 | 3304 |  | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 7 |
| . 52 | 3311 | 3319 | 3327 | 3334 | 3342 | 3350 | 3357 | 3365 | 3373 | 3381 | 1 | 2 | 2 | 3 | 4 | 5 |  | 6 | 7 |
| . 53 | 3388 | 3396 | 3404 | 3412 | 3420 | 3428 | 3436 | 3443 | 3451 | 3459 |  | 2 | 2 | 3 | 4 | 5 | 6 |  | 7 |
| . 54 | 3467 | 3475 | 3483 | 3491 | 3499 | 3508 | 3516 | 3524 | 3532 | 3540 |  | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 7 |
| . 55 | 3548 | 3556 | 3565 | 3573 | 3581 | 3589 | 3597 | 3606 | 3614 | 3622 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 7 | 7 |
| . 56 | 3631 | 3639 | 3648 | 3656 | 3664 | 3673 | 3681 | 3690 | 3698 | 3707 |  | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 |
| . 57 | 3715 | 3724 | 3733 | 3741 | 3750 | 3758 | 3767 | 3776 | 3784 | 3793 | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 |
| 58 | 3802 | 3811 | 3819 | 3828 | 3837 | 3846 | 3855 | 3864 | 3873 | 3882 | 1 |  | 3 | 4 | 4 | 5 | 6 | 7 | 8 |
| . 59 | 3890 | 3899 | 3908 | 3917 | 3926 | 3936 | 3945 | 3954 | 3963 | 3972 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 |
| . 60 | 3981 | 3990 | 3999 | 4009 | 4018 | 4027 | 4036 | 4046 | 4055 | 4064 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 7 | 8 |
| 61 | 4074 | 4083 | 4093 | 4102 | 4111 | 4121 | 4130 | 4140 | 4150 | 4159 |  | 2 | 3 |  | 5 | 6 |  |  | 9 |
| . 62 | 4169 | 4178 | 4188 | 4198 | 4207 | 4217 | 4227 | 4236 | 4246 | 4256 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  | 9 |
| . 63 | 4266 | 4276 | 4285 | 4295 | 4305 | 4315 | 4325 | 4335 | 4345 | 4355 |  | 2 | 3 | 4 | 5 | 6 | 7 |  | 9 |
| . 64 | 4365 | 4375 | 4385 | 4395 | 4406 | 4416 | 4426 | 4436 | 4446 | 4457 | 1 | , | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| . 65 | 4467 | 4477 | 4487 | 4498 | 4508 | 4519 | 4529 | 4539 | 4550 | 4560 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| . 66 | 4571 | 4581 | 4592 | 4603 | 4613 | 4624 | 4634 | 4645 | 4656 | 4667 |  | 2 | 3 | 4 | 5 | 6 | 7 |  | 10 |
| . 67 | 4677 | 4688 | 4699 | 4710 | 4721 | 4732 | 4742 | 4753 | 4764 | 4775 |  | 2 | 3 | 4 | 5 | 7 | 8 |  | 10 |
| . 68 | 4786 | 4797 | 4808 | 4819 | 4831 | 4842 | 4853 | 4864 | 4875 | 4887 | 1 | 2 | 3 | 4 | 6 | 7 | 8 |  | 10 |
| . 69 | 4898 | 4909 | 4920 | 4932 | 4943 | 4955 | 4966 | 4977 | 4989 | 5000 | 1 | 2 | 3 | 5 | 6 | 7 | 8 |  | 10 |
| . 70 | 5012 | 5023 | 5035 | 5047 | 558 | 5070 | 5082 | 5093 | 5105 | 5117 | 1 | 2 | 4 | 5 | 6 | 7 |  |  | 11 |
| . 71 | 5129 | 5140 | 5152 | 5164 | 5176 | 5188 | 5200 | 5212 | 5224 | 5236 | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 10 | 11 |
| . 72 | 524 | 526 | 5272 | 52 | 529 | 5309 | 5321 | 5333 | 5346 | 5358 | 1 | 2 | 4 | 5 | 6 | 7 | 9 | 10 | 11 |
| . 73 | 5370 | 5383 | 5395 | 5408 | 5420 | 5433 | 54 | 5458 | 5470 | 5483 | 1 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 |
| . 74 | 5495 | 5508 | 5521 | 5534 | 5546 | 5559 | 5572 | 5585 | 5598 | 5610 | 1 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 12 |
| . 75 | 5623 | 5636 | 5649 | 5662 | 5675 | 5689 | 5702 | 5715 | 5728 | 5741 | 1 | 3 | 4 | 5 | 7 | 8 | 9 | 10 | 12 |
| . 76 | 5754 | 5768 | 5781 | 5794 | 5808 | 5821 | 5834 | 5848 | 5861 | 5875 | 1 | 3 | 4 | 5 | 7 | 8 | 9 | 11 | 12 |
| . 77 | 5888 | 5902 | 5916 | 5929 | 5943 | 5957 | 5970 | 5984 | 5998 | 6012 | 1 | 3 | 4 | 5 | 7 | 8 | 10 | 11 | 12 |
| . 78 | 6026 | 6039 | 6053 | 6067 | 6081 | 6095 | 6109 | 6124 | 6138 | 6152 | 1 | 3 | 4 | 6 | 7 | 8 | 10 | 11 | 13 |
| . 79 | 6166 | 6180 | 6194 | 6209 | 223 | 6237 | 6252 | 6266 | 6281 | 6295 | 1 | 3 | 4 | 6 | 7 | 9 | 10 | 11 | 13 |
| . 80 | 6310 | 6324 | 6339 | 6353 | 6368 | 6383 | 6397 | 6412 | 6427 | 6442 | 1 | 3 | 4 | 6 | 7 | 9 | 10 | 12 | 13 |
| .81 | 6457 | 6471 | 6486 | 6501 | 6516 | 6531 | 6546 | 6561 | 6577 | 6592 | 2 | 3 | 5 | 6 | 8 | 9 | 11 | 12 | 14 |
| . 82 | 6607 | 6622 | 6637. | 6653 | 6668 | 6683 | 6699 | . 6714 | 6730 | 6745 | $2 \cdot$ | 3 | 5 | 6 | 8 | 9 | 11 | 12 | 14 |
| . 83 | 6761 | 6776 | 6792 | 6808 | 6823 | 6839 | 6855 | 6871 | 6887 | 6902 | 2 | 3 | 5 | 6 | 8 | 9 | 11 | 13 | 14 |
| . 84 | 6918 | 6934 | 6950 | 6966 | 6982 | 6998 | 7015 | 7031 | 7047 | 7063 | 2 | 3 | 5 | 6 | 8 | 10 | 11 | 13 | 15 |
| . 85 | 7079 | 7096 | 7112 | 7129 | 7145 | 7161 | 7178 | 719 | 7211 | 7228 | 2 | 3 | 5 | 7 | 8 | 10 | 12 | 13 | 15 |
| . 86 | 7244 | 7261 | 7278 | 7295 | 7311 | 7328 | 7345 | 7362 | 7379 | 7396 | 2 | 3 | 5 | 7 | 8 |  | 12 | 13 | 15 |
| . 87 | 7413 | 7430 | 744 | 746 | 7482 | 7499 | 7516 | 7534 | 7551 | 7568 | 2 | 3 | 5 | 7 | 9 | 10 | 12 | 14 | 16 |
| . 88 | 7586 | 7603 | 7621 | 7638 | 7656 | 7674 | 769 | 7709 | 7727 | 7745 | 2 | 4 | 5 | 7 | 9 | 11 | 12 | 14 | 16 |
| 89 | 7762 | 7780 | 7798 | 7816 | 7834 | 7852 | 7870 | 7889 | 7907 | 7925 | 2 | 4 | 5 | 7 | 9 | 11 | 13 | 14 | 16 |
| . 90 | 7943 | 7962 | 7980 | 7998 | 8017 | 8035 | 8054 | 8072 | 8091 | 8110 | 2 | 4 | 6 | 7 | 9 | 11 | 13 | 15 | 17 |
| 91 | 8128 | 8147 | 8166 | 8185 | 8204 | 8222 | 8241 | 8260 | 8279 | 8299 | 2 | 4 | 6 | 8 | 9 | 11 | 13 | 15 | 17 |
| . 92 | 8318 | 8337 | 8356 | 8375 | 8395 | 8414 | 8433 | 8453 | 8472 | 8492 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 15 | 17 |
| . 93 | 8511 | 8531 | 8551 | 8570 | 8590 | 8616 | 8630 | 8650 | 8670 | 8690 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 |
| . 94 | 8710 | 8730 | 8750 | 8770 | 8790 | 8810 | 8831 | 8851 | 8872 | 8892 |  | 4 |  | 8 | 10 | 12 | 14 | 16 | 18 |
| . 95 | 8913 | 8933 | 8954 | 8974 | 8995 | 9016 | 9036 | 9057 | 9078 | 9099 | 2 | 4 | 6 | 8 | 10 | 12 | 15 | 17 | 19 |
| . 96 | 9120 | 9141 | 9162 | 9183 | 9204 | 9226 | 9247 | 9268 | 9290 | 9311 | 2 | 4 | 6 | 8 | 11 | 13 | 15 | 17 | 19 |
| . 97 | 9333 | 9354 | 9376 | 9397 | 9419 | 9441 | 9462 | 9484 | 9506 | 9528 | 2 | 4 | 7 |  | 11 | 13 | 15 | 17 | 20 |
| . 98 | 9550 | 9572 | 9594 | 9616 | 9638 | 9661 | 9683 | 9705 | 9727 | 9750 | 2 | 4 | 7 | 9 | 11 | 13 | 16 | 18 | 20 |
| . 99 | 9772 | 9793 | 9817 | 9840 | 9863 | 9886 | 9908 | 9931 | 9954 | 9977 | 2 | 5 | 7 | 9 | 11 | 14 | 16 | 18 | 20 |

## सूचना - (पृष्ठ 1 वरून पुढे.....)

(8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (एफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर बा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणान्या गैस्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
(9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घ्रेऊन जाण्यास परवानगी आहे. मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

## नमुना प्रश्न

Pick out the correct word to fill in the blank :
Q. No. 201. I congratulate you $\qquad$ your grand success.
(1) for
(2) $a t$
(3) on
(4) about

ह्या प्रश्नाचे योग्य उत्तर "(3) on" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक "(3)" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्र. क्र. 201.
(1)
(2)
(4)

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तर-क्रमांक हा तुम्हाला स्वतंत्रतर्त्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल का शाईचे पेन वापरू नये.

