प्रश्नपुस्तिका क्रमांक BOOKLET No.

100173

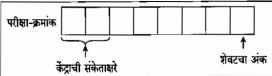
I12

संच क्र.

विद्युत अभियांत्रिकी पेपर - 1

प्रश्नपुस्तिका-I

2018


वेळ: 2 (दोन) तास

एकूण प्रश्न : 100 एकूण गुण : 200

सूचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपित्रकेवरील सूचनेप्रमाणे तुमच्या उत्तरपित्रकेवर नमूद करावा. अशा प्रकारे उत्तरपित्रकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकिरता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) <u>सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत.</u> घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नांकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.
- (8) (अ) प्रस्तुत परीक्षेसाठी Non-programmable Scientific calculator वापरण्यास परवानगी आहे.
 - (ब) उमेदवाराने परीक्षा कक्षात आणलेल्या calculator चा सिरीज क्रमांक हजेरीपटावर नमूद करावा.
 - (स) उमेदवाराने परीक्षेत programmable calculator वापरल्याचे आढळल्यास त्याची उमेदवारी रद्द करण्यात येईल.

ताकीढ

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

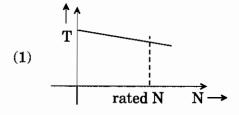
पर्यविक्षकांच्या सूचनेविना हे सील उघडू नये

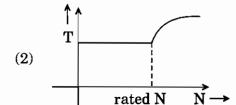
कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK

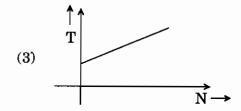
1

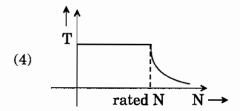
1

1.	The (1)	starting wi	nding of a (2)	single phas Stator	se motor is (3)	s placed in the Armature	e (4)	Field		
										
2.		e starting tor de α betweer	-	-			is direc	tly related to the		
	(1)	cos α	(2)	$\sin\alpha$	(3)	tan α	(4)	$\sin \frac{\alpha}{2}$		
3.	The	shifting ma	gnetic fie	ld in a shad	ed pole m	otor is develo	ped by u	sing		
	(1)	shading co	ils		(2)	salient poles	3			
	(3)	a capacitor	ŗ		(4)	damper win	ding			
4.		Implementation of Volts/Hertz strategy for invertor-fed induction motor in open loop is used in								
	(1)	Low perfor	mance ap	plications						
	(2)	High perfo	rmance a	pplications						
	(3)	Both (1) ar	nd (2)							
	(4)	None of th	e these							
5.	In V	//F control o	f induction	n motors, th	e ratio of	V/F is boosted	d during	<u> </u>		
	(1)	below rate	d frequen	сy	(2)	at half rated	l voltage	;		
	(3)	below 5 He	ertz		(4)	above rated	frequen	cy		
6.	An	under excite	d synchro	nous motor	operates					
	(1)	lagging PF								
	(2)	unity PF								
	(3)	leading PF	1							
	(4)	lagging PF	at low lo	ads and lead	ling PF at	high loads				
7.	Con	npared with	a resistor	split phase	motor, a	capacitor star	rt motor	· has		
	(1)	Higher sta								
	(2)	Lower star	ting torqu	ıe						
	(3)	Higher run	ning torq	ue						
	(4)	Lower runi	ning torqu	1e						
कच्च्य	ा कामार	 गठी जागा / SP	ACE FOR	ROUGH WO	RK		_	P.T.O.		

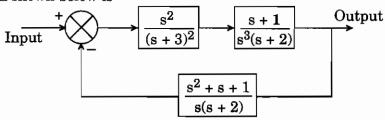

8.	The starting torque of a three-phase induction motor can be increased by increasing								
	(1)	The rotor resistance	(2)	The rotor reacta	ince				
	(3)	The stator resistance	(4)	The stator react	cance				
9.		Star-Delta starting of a squirrel cage ds to be expanded, starting current a	_	-	<u>-</u>				
	(1)	$\frac{1}{\sqrt{3}}$, $\frac{1}{3}$		$\frac{1}{3}$, $\frac{1}{3}$					
	(3)	$\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$	(4)	$\frac{1}{3}$, $\frac{1}{\sqrt{3}}$					
10.		O Hz, 3-phase induction motor has a ses of the motor are	full loa	ad speed of 1440 r	rpm. The number of				
	(1)	4 (2) 6	(3)	12	(4) 8				
11.	If the supply frequency of synchronous motor is 50 cycles/second, then the rotor must revolve at								
	(1)	25 cycles/second	(2)	50 cycles/second	l				
r	(3)	100 cycles/second	(4)	None of the abo	ve				
12.	In a	synchronous motor,							
	(1)	E is always less than V	(2)	$\mathbf{E} = \mathbf{V}$					
	(3)	E is always more than V	(4)	E may be more	or less than V				
13.	Power factor of a synchronous motor can be improved by								
	(1)	Keeping load constant and running	g moto	r over-excited					
	(2)	Keeping load constant and running	g moto	r under-excited					
	(3)	varying the load and constant excit	tation						
	(4)	None of the above							
14.	Ast	the load on a synchronous motor incr	eases,	the torque angle					
	(1)	increases	(2)	decreases					
	(3)	remains the same	(4)	may increase or	decrease				


(3) remains the same


- 15. Damper winding is provided in synchronous motors to
 - (1) increase power factor
- (2) suppress hunting


(3) reduce speed

- (4) increase speed
- 16. The full load slip of synchronous motor is
 - **(1)** 5%
- (2) 1%
- (3) 2%
- (4) zero
- 17. Single phase synchronous motors are known as unexcited motors because
 - (1) They run at constant speed
 - (2) They do not need d.c. excitation
 - (3) They can operate on single phase supply only
 - (4) None of the above
- 18. In a synchronous motor, the inverted V-curve represents the relation between
 - (1) field current and power factor
- (2) field current and armature current
- (3) armature current and power factor (4)
- (4) None of the above
- **19.** Torque-speed characteristics of synchronous motor operating with V/F control is given in the figure below:

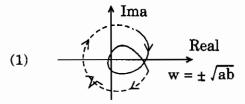


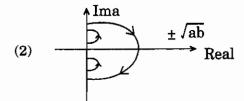
- **20.** The pull-out torque of a salient pole synchronous motor occurs when the torque angle is about
 - (1) 0°
- $(2) 90^{\circ}$
- (3) 30°
- (4) 75°

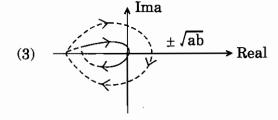
21.	Which of the following operations is commutative but not associative?									
	(1)	AND	(2)	OR	(3)	EX-OR	(4)	NAND		
22.				resistors	required in	a 4-bit D/ A n	etwork o	of		
		ghted-resist		•						
	(1)	4 	(2)	8 	(3)	15 	(4)	16		
23.	The	speed of co	nversion is	s maximu	m in					
	(1)	Successive	approxin	nation A/D	converter					
	(2)	Parallel-co	mparator	A/D conve	erter					
	(3)	Counter-ra	amp A/D c	onverter						
	(4)	Dual-slope	A/D conv	erter						
24.	A m	ultiplexer is	a a							
	(1)	combination	nal circui	t	(2)	flip-flop				
	(3)	sequential	circuit		(4)	comparator				
25.	When a flip-flop is reset its output will be									
	(1)	$Q = 0$, $\overline{Q} =$: 0		(2)	$Q = 1$, $\overline{Q} = 1$	1			
	(3)	$Q = 0, \overline{Q} =$: 1		(4)	$Q = 1$, $\overline{Q} = 0$	0			
26.	In a master slave JK-flip-flop $J=K=1$. The state Q_{n+1} of the flip-flop after the clock pulse will be									
	(1)	0	(2)	1	(3)	Q_n	(4)	\bar{Q}_n		
27.	An i	deal operati	onal ampl	ifier has						
	(1)	Infinite ou	tput impe	dance	(2)	Zero input impedance				
	(3)	Infinite ba	ndwidth		(4)	All of the ab	ove			
28.	Whe	en is differer	tial ampl	ifier used	as invertin	g amplifier ?				
	(1)	The output	and non-	inverting	terminal ar	re connected t	together.			
	(2)	The output	and inve	rting term	ninal are co	nnected toget	her.			
	(3)	The non-in	verting in	put te rm i	nal is grou	nded.				
	(4)	None of the	e above							
कच्च्य	 ा कामार	नाठी जागा <i>।</i> SP	ACE FOR	ROUGH W	ORK	-				

29.	in the phase-shift oscillator, the operating frequency is determined by									
	(1)	Resistance	only		(2)	Capacitance	e only			
	(3)	LC combin	ations		(4)	RC combina	ations			
30.	Wh	at logic func	tion is pro	duced by add	ing inve	erters to the i	nputs of an A	AND gate ?		
	(1)	OR	(2)	NOR	(3)	NAND	(4) X-0	OR		
31.	The	ratio of tra	nsformatio	on in the case	of poter	ntial transfor	mers			
	(1)	increases	with incre	ase in power i	factor of	f secondary b	urden			
	(2)	remains co	onstant ir	respective of t	he powe	er factor of se	condary bure	den		
	(3) decreases with increase in power factor of secondary burden									
	(4)	None of th	e above							
32.	When is the secondary winding of a current transformer open-circuited with the									
	primary winding energized ?									
	(1)									
		thereby producing a large voltage in secondary winding.								
	(2)									
		rupture the insulation.								
	(3) The large magnetizing current is taken off, it leaves a large value of residual									
	(4)	magnetism.								
	(4) All of the above									
33.		In strain gauge bridge configuration for measurement of torque, the strain gauge								
		st be precise	-							
	(1)	0° with the			(2)	45° with the				
	(3)	90° with tl 	ne shaft az	xis 	(4)	60° with the	e shaft axis			
34.		nermocouple	has low r	esponse time	when					
	(1)	bare used			(2)	thin sheath	ed used			
	(3)	Both (1) ar	nd (2)		(4)	None of the	above			
35.	A R	eynolds nun	ber of 100	00 indicates						
	(1)	Turbulent	flow							
	(2)	Laminar f	ow							
	(3)	A flow whi	ch can eit	her be turbul	ent or la	aminar				
	(4)	None of th	e above							
कच्च्य	ा कामार	 प्राठी जागा / SF	ACE FOR	ROUGH WORK	·			P.T.O.		

- **36.** Type 1 system means that open-loop transfer function has a number of integrations equal to
 - (1) Zero
- (2) One
- (3) Two
- (4) None of the above
- **37.** The stability of a system which approaches the origin as time tends to infinity is termed as
 - (1) asymptotically stable
- (2) limitedly stable
- (3) oscillating in nature
- (4) None of the above
- **38.** The system shown below is




(1) a type 0 system


(2) a type 1 system

(3) a type 2 system

- (4) None of the above
- **39.** The Nyquist stability plot for $GH = \frac{s-a}{s(s+b)}$, a, b > 0 will be

(4) None of the above

40. The following quadratic form

$$W(X) = 10X_1^2 + 4X_2^2 + X_3^2 + 2X_1X_2 - 2X_2X_3 - 4X_1X_3$$

(1) is positive definite

- (2) is negative definite
- (3) is negative semi-definite
- (4) None of the above

41.	Presence of Gold in thyristors									
	(1)	reduces minority carrier life time a	and inc	reases leakage current						
	(2)	reduces minority carrier life time a	and red	luces leakage current						
	(3)	3) increases minority current life time and reduces leakage current								
	(4)	(4) increases minority current life time and increases leakage current								
42.	Thyristor control adopted for ac applications use the following triggering method in the most common way.									
	(1)	Pulse gate triggering	(2)	AC gate triggering						
	(3)	Thermal triggering	(4)	Radiation triggering						
43.	If R_E = 1 k Ω and I_V = 5 mA, determine the value of V_{EE} which will cause the UJT to turn "off".									
	(1)	5 V	(2)	2 V						
	(3)	7 V	(4)	6 V						
44.	Following is the demerit of IGBT :									
	(1)	.) High peak current capability (2) Low		Low turn off time						
	(3)	Ease of gate drive	(4)	High turn off time						
45.	Multiple quadrant operation Luo converters are second generator converters, they									
		nave three modes								
	(1)	•								
		Two quadrant in reverse operation.								
	(0)	Four quadrant in dc/dc Luo converter.								
	(2)									
		Two quadrant in reverse operation								
	(9)	Two quadrant in dc/dc Luo convert								
	(3)	Two quadrant in forward operation								
		Four quadrant in reverse operation								
	(4)	Four quadrant in dc/dc Luo conver								
	(4)	Four quadrant in forward operation								
		Four quadrant in reverse operation								
		Four quadrant in dc/dc Luo converter.								

46.	Inversion failure in naturally commutated circuits used for motor loads leads to									
	(1)	High voltage								
	(2)	High fault c	urrent	•						
	(3)	Low power f	actor							
	(4)	Low fault cu	rrent							
47.	The	maximum d.o	. voltag	e available	from a fu	lly controlled	d bridge c	onverter		
	sup	plying a moto	and op	erating fro	n low imp	edance 230	V mains	is		
	(1)	230 V	(2)	210 V	(3)	207 V	(4)	180 V		
48.	Spe	Speed reversal of d.c. series motor can be achieved by								
	(1) Reversing the field winding									
	(2)	Reversing fie	eld and	armature w	inding si	multaneousl	у			
	(3)	Varying volt	age mag	gnitude						
	(4)	Disconnectin	ig the ai	rmature su	pply					
49.	According to Betz theory, the maximum possible power coefficient is 16/27 and 59% efficiency is the best conventional wind turbine can do in extracting power from the wind because									
	a.	a. 100% efficiency is not possible due to fluid mechanics of wind.								
	b. 100% efficiency can be extracted then the flow of air would be reduced to complete stop and no velocity would remain available to sustain flow through extraction mechanism.									
	Answer Options:									
	(1)	a is true, b is	false		(2)	Both a and	l b are tru	ıe		
	(3)	a is false, b i	s true		(4)	Both a and	l b are fal	se		
50.	The	operation of t	he casca	ide connect	ion of slip	-ring induct	ion motor	is regarded	as	
	(1)	Speed contro	ol by em	f injection i	n rotor cir	cuit				
	(2)	Speed contro	l by cur	rent injecti	on					
	(3)	Speed contro	ol by rote	or resistanc	e					
	(4)	Speed contro	•							

- 51. Which of the following statements are true for renewable energy?
 - a. Energy obtained from natural and persistent flow of energy occurring in the immediate environment.
 - b. The renewable energy is obtained from static stores of energy that remain underground unless released by human interaction.
 - c. It is also called as Green energy or Sustainable energy.
 - d. It is the energy supplied by finite supplies or Brown energy.
 - (1) a and b

(2) b and c

(3) a and c

- (4) c and d
- **52.** Comment on the speed of generators of Chandrapur Super Thermal Power Station and Koyana Hydro Power Station.
 - (1) Same speed of both power station generators
 - (2) Chandrapur Super Thermal Power Station generator speed is higher
 - (3) Koyana Hydro Power Station speed is higher
 - (4) Cannot comment
- **53.** Electrostatic precipitators are used in
 - (1) Thermal power station to reduce the pollution
 - (2) Thermal power station to heat the water
 - (3) Solar power plant to generate static electricity
 - (4) Nuclear power plant to control radiation
- **54.** Corona effect is observed in
 - (1) Underground cables
 - (2) Underwater cables
 - (3) Overhead distribution lines
 - (4) Overhead EHV transmission lines
- 55. As compared to single conductor, the bundled conductor transmission lines have
 - Lower values of surge impedance
 - (2) Higher values of surge impedance
 - (3) Zero surge impedance
 - (4) Infinite surge impedance

56.	Per unit impedances of transformer, measured from primary side and secondary side								
	are								
	(1)	equal	C	. •					
	(2)	depends on t							
	(3)	depends on a	_		er				
	(4)	depends on p	polarity o	ı wındıngs					
57.	Dur	ing day time,	solar cell	s generate,					
	(1)	constant D.C	C. voltage	;	(2)	variable D	.C. voltag	ge	
	(3)	constant A.C	. voltage		(4)	variable A.	C. voltag	ge	
58.	Ope	ration of follo	wing win	d turbine is	indepen	dent of wind	direction	n.	
	(1) Horizontal axis turbine								
	(2)	Vertical axis	turbine						
	(3)	Angular hor	izontal az	xis turbine					
	(4)	None of the	options a	vailable					
59.	In s	team turbine	plant, ext	traction of h	neat from	flue gases t	o heat fe	ed water of	the
		er is done by	. ,			Ü			
	(1)	Air preheate	r		(2)	Superheate	er		
	(3)	Economiser			(4)	Condenser			
	Which of the following sentences is <i>true</i> for transmission line sequence impedances?								
	(1)	Positive sequ	-				_	_	
	(2)	Positive sequ		-	_	_			
	(3)	Negative sec		-	_				
	(4)	All the seque	•	-	-				
61.	The following factors are affecting SAG in overhead lines :								
	a.	The SAG is i	nversely	proportion	al to the	weight of the	e conduct	or.	
	b.	The SAG is o	-			_			
	c.	The SAG is		-	_	_	tensile	strength	of the
		conductor at	_			~			
	d.	The SAG inc	reases w	ith increase	e in te m p	erature.			
	From	m the above st	atement	s, which are	e incorrec	et?			
	(1)	a and b	(2)	b and d	(3)	a and c	(4)	a and d	
		 नाठी जागा / SPA							

- 62. An overhead transmission line has a span of 220 metres, conductor weighing 804 kg/km. Calculate the maximum SAG if the ultimate tensile strength of the conductor is 5758 kg. Assume safety factor as 2. Also find maximum tension T.
 - (1) SAG = 1.69 T = 2879 kg
 - (2) SAG = 2 T = 2800 kg
 - (3) SAG = 2.21 T = 2875 kg
 - (4) SAG = 1.89 T = 2789 kg
- 63. A power station's maximum demand is 50 MW, capacity factor is 0.6 and utilization factor is 0.85. Calculate the following:
 - a. Load factor
 - b. Annual energy produced
 - (1) Load factor: 0.5068

Annual energy: 0.3×10^6 MWh

(2) Load factor: 0.7058

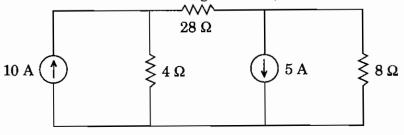
Annual energy: 0.3×10^7 MWh

(3) Load factor: 0.5068

Annual energy: 0.3×10^7 MWh

(4) Load factor: 0.7058

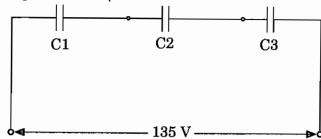
Annual energy: 0.3×10^6 MWh


- 64. Transient stability of the generator is dependent on
 - a. generator reactance; lower reactance decreases peak power and increases initial rotor angle.
 - b. how heavily the generator is loaded.
 - c. generator inertia; higher the inertia, slower the rate of the change of angle.
 - d. generator output during fault

Which of the above is incorrect?

- (1) a
- (2) b
- (3)
- (4) None of the above

65.	In active power and frequency control,										
	a.	frequency should remain constant.									
	b.	 considerable drop in frequency could result in low magnetising currents in induction motor and transformers. 									
	c.	the frequency of a system is dependent on reactive power balance.									
	d.	d. relatively closed control of frequency ensures constancy of speed of induction motors.									
	Which of the above statements are incorrect?										
	(1)	a and b (2) b and c	(3)	c and d (4) a and d							
66.	Voltage control bus or P-V bus is that bus where										
	(1)	(1) only voltage control equipments are connented									
	(2)	only generator is connected									
	(3)	only frequency controllers are connected									
	(4) generator or voltage control equipments are connented										
67.	In Gauss-Seidel's method of power flow solution, the acceleration factor is used for										
	(1)	Reducing the number of iterations	(2)	Increasing the number of iterations							
	(3)	One step solution in one iteration	(4)	Easy back substitution of voltages							
68.	The reactive power supply capability of an alternator is determined by										
	(1)	kVA rating of alternator	(2)	short circuit ratio of alternator							
	(3)) limits of the generator governor (4) voltage rating of the alternator									
69.	Fer	ranti effect in long transmission lines	is du	e to the effect of							
	(1)	Line reactance	(2)	Line capacitance							
	(3)	Line resistance	(4)	None of the above							
70.	Syn	nmetrical fault currents are restricted	l by								
	(1)	System impedance	(2)	System voltage profile							
	(3)	System power rating	(4)	D.C. component of fault current							


- 71. While measuring power in a three-phase load by two-wattmeter method, the reading of the two wattmeters will be equal and opposite when
 - (1) power factor is unity
- (2) load is balanced
- (3) phase angle is between 60° and 90° (4)
- (4) the load is purely inductive
- 72. In the current shown in the figure below, the current I will be

- (1) 1 A
- (2) 2A
- (3) 4 A
- $(4) \quad 8 A$
- 73. In a R-L-C series circuit, $R = 10 \Omega$, L = 1 H and $C = 1 \mu F$. It is connected to 230 V a.c. source of variable frequency. When the frequency is set to zero, circuit current will be
 - (1) 23 A
- (2) 11·5 A
- (3) 46 A
- (4) zero
- 74. The average value of the positive half of the sine wave current having peak value of I_m will be
 - (1) $I_m/\sqrt{2}$
- (2) $I_m/1.11$
- (3) $I_m/2\pi$
- (4) I_m/π

- 75. At resonance
 - (1) pf is better in R-L-C series circuit than R-L-C parallel circuit
 - (2) pf is leading in R-L-C series circuit and lagging in R-L-C parallel circuit
 - (3) pf is leading in R-L-C parallel circuit and lagging in R-L-C series circuit
 - (4) pf is unity in R-L-C series as well as R-L-C parallel circuits
- 76. Two heaters A and B are connected in parallel across supply voltage V. Heater A produces 500 kcal in 20 minutes and B produces 1000 kcal in 10 minutes. The resistance of A is 10 Ω . The resistance of B is
 - (1) 0.25Ω
- (2) 5Ω
- (3) 2.5Ω
- (4) 0.5Ω

77. If the charge on each of the capacitors in the given figure is $4500~\mu C$, what is the total capacitance in μF ?

- (1) 325
- (2) 11.1
- (3) 22.2
- (4) 33.3
- 78. A 100 watt light bulb burns on an average of 10 hours a day for one week. The weekly consumption of energy will be _____ units.
 - (1) 7
- (2) 70
- $(3) \quad 0.7$
- (4) 0.07
- 79. Three impedances are connected in delta, Phase I and II with $R_1 jX_L$, phase III with $R_3 + jX_C$. $R_1 = R_2 = R_3$ and $|X_L| = |X_C|$. This load is
 - (1) balanced
 - (2) balanced or unbalanced, depending on frequency of supply
 - (3) unbalanced
 - (4) neither balanced nor unbalanced
- 80. Apparent power in three-phase star connected balanced load is given by
 - $(1) \quad \sqrt{3} \ V_L \, I_L$

 $(2) \quad \sqrt{3} \ V_L \, I_L \cos \phi$

(3) $\sqrt{3} V_L I_L \sin \phi$

- (4) None of the above
- 81. If a 220/440 V, 50 Hz, single phase transformer is operated on 220 V, 40 Hz supply then
 - (1) the eddy current loss and hysteresis loss of the transformer will decrease.
 - (2) the eddy current loss and hysteresis loss of the transformer will increase.
 - (3) the hysteresis loss of the transformer increases while eddy current loss remains the same.
 - (4) the hysteresis loss remains the same, whereas eddy current loss decreases.

- 82. A transformer possesses a percentage resistance and percentage reactance of 1% and 4% respectively. Its voltage regulation and power factor 0.8 lagging and 0.8 leading would be
 - (1) 2.4% and -0.8%
 - (2) 3.2% and -1.6%
 - (3) 3.2% and -3.2%
 - (4) 4.8% and -1.6%
- 83. The terms 'up' and 'down' are associated with
 - (1) cooling of the transformer
 - (2) efficiency of the transformer
 - (3) installation of the transformer
 - (4) regulation of the transformer
- 84. During short-circuit test on a small transformer, the frequency (of applied voltage) is increased from 50 Hz to 200 Hz. The copper losses will increase by the factor of
 - (1) 16
- (2) 4
- (3) 1
- $(4) \frac{1}{4}$
- 85. Two components of no load current of single phase transformer are $I_w = 0.4$ A and $I_m = 1.44$ A. Its no load power factor will be
 - $(1) \quad \cos\!\left(\frac{0.4}{1.44}\right)$
 - (2) $\cos \left[\frac{0.4}{\sqrt{1.44^2 0.4^2}} \right]$
 - (3) $\cos \left[\frac{0.4}{\sqrt{1.44^2 + 0.4^2}} \right]$
 - (4) None the the above
- 86. In which of the following cases, will the same transformer have highest efficiency?
 - Supplying rated load at 0.8 pf lagging.
 - (2) Supplying rated load at 0.8 pf leading.
 - (3) Supplying rated load at unity pf.
 - (4) Supplying 10% overload (110% of rated) at 0.8 pf lagging.

87.	In magnetic circuits, due to fringing effect, the following is true if B_c represents core
	flux density and B_g represents average air gap flux density.

- $(1) \quad B_c = B_g$
- $(2) \quad B_c > B_g$
- (3) $B_c < B_g$
- (4) Bg remains unaffected due to fringing

88.	For magnetic circuits, the relationship which is similar to application of Ohm's Law
	is, (where ϕ is flux, S is reluctance)

(1) $\phi = \frac{S}{mmf}$

(2) $mmf = \frac{\phi}{S}$

(3) $\phi = \frac{mmf}{S}$

(4) None of the above

- (1) 500 V
- (2) 100 V
- (3) 1000 V
- (4) 5000 V

90. A coil of 1000 turns is wound on a core. A current of 1 A flowing through the coil creates a core flux of 1 mWb. The energy stored in the magnetic field is

- $(1) \quad 0.25 \text{ J}$
- (2) 0·5 J
- (3) 1 J
- (4) 2J

91. A lap wound dc machine has 400 conductors and 8 poles. The voltage induced per conductor is 2 V. The machine generates a voltage of

- (1) 200 V
- (2) 400 V
- (3) 100 V
- (4) 800 V

92. A generator delivers 210 V on no load and 200 V on full load. The voltage regulation of the d.c. generator is

- (1) 95%
- (2) 5%
- (3) 10%
- (4) 4.76%

93. The type of d.c. generator used for arc welding purpose is a

- (1) series generator
- (2) shunt generator
- (3) cumulative compounded generator
- (4) differentially compounded generator

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

94.	If the applied voltage to a d.c. machine is 230 V, then the back emf for maximum power developed is										
	(1)	200 V	(2)	230 V	(3)	115 V	(4)	460 V			
95.	A 220 V d.c. machine has an armature resistance of 1 ohm. If the full load current is 20 A (neglect field current), the difference in the induced voltages when the machine is running as a motor and as a generator is										
	(1)	20 V	(2)	zero	(3)	40 V	(4)	50 V			
96.	In electric machines, the process of electromechanical energy conversion is										
	(1)	a reversible	one		(2)	not revers	ible				
	(3)	lossless			(4)	without m	echanical	motion			
97.	In a	In a d.c. machine,									
	(1)	(1) field windings are on rotor and armature windings are on stator									
	(2)	(2) field windings are on stator and armature windings are on rotor									
	(3)	(3) field windings are on rotor and instead of armature windings, commutator windings exist									
	(4)	distributed	field wir	ndings are	on rotor						
98.	Induced emf in d.c. generator is directly proportional to										
	(1)	armature s	peed		(2)	number of machine poles					
	(3)	flux per pol	e		(4)	All the abo	ove				
99.	The	field windin	g of a d.c	shunt ma	chine has						
	(1)	current exc	itation		(2)	voltage ex	citation				
	(3)	Both (1) an	d (2)		(4)	separate e	xcitation				
100.	The	speed of a d.	c. shunt	motor for a	given loa	d can be con	trolled by	,			
	(1)										
	(2)	controlling	armatur	e voltage							
	(3)										
	(4)	All the abov	ve metho	ds							
कच्च्य	कामार		ACE FOR	ROUGH WO	DRK				P.T.O.		

सूचना - (पृष्ठ 1 वरून पुढे....)

- (9) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (10) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

	ममुना प्रस्म
Pick out the	correct word to fill in the blank :
Q. No. 201.	I congratulate you your grand success.
	(1) for (2) at (3) on (4) about ह्या प्रश्नाचे योग्य उत्तर "(3) on" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक "(3)" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.
ਧ਼. क੍ਰ. 201.	① ② ● ④ अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK