अधिव्याख्याता, उत्पादन अभियांत्रिकी, शासकीय तंत्रनिकेतन, महाराष्ट्र तंत्रनिकेतन शिक्षक सेवा, गट-अ. Lecturer, Production Engineering, Government Polytechnic, Maharashtra Polytechnic Teachers' Services, Group-A.

Steps of Exam : 1) Written Exam – 200 Marks

2) Interview – 50 Marks

-: Scheme of Examination :-

Subject & Code No.	Medium	Marks	No. of	Duration	Level	Nature of
			Questions			Paper
Related to the Subject	English	200	80	3 hours	Degree	Objective
(Code No 980)						type

Final merit list will be prepared by considering the marks obtained in written test and interview.

Sr.	Topics and Sub-topics							
No.								
Ι	ENG	ENGINEERING MATHEMATICS						
	(1)) Linear Algebra: Matrix algebra, Systems of linear equations, Eigen values and Eigen						
		vectors.						
	(2)	Calculus: Functions of single variable, Limit, continuity and differentiability, Mean value						
		theorems, Evaluation of definite and improper integrals, Partial derivatives, Total						
		derivative, Maxima and minima, Gradient, Divergence and Curl, Vector identities,						
		Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Greens						
		theorems.						
	(3)	Differential equations: First order equations (linear and nonlinear), Higher order linear						
		differential equations with constant coefficients, Cauchy's and Euler's equations, Initial						
		and boundary value problems, Laplace transforms, Solutions of one dimensional heat and						
		wave equations and Laplace equation.						
	(4)	Complex variables : Analytic functions, Cauchy's integral theorem, Taylor series.						
	(5)	Probability and Statistics : Definitions of probability and sampling theorems,						
		Conditional probability, Mean, median, mode and standard deviation, Random variables,						
		Poisson, Normal and Binomial distributions.						
	(6)	Numerical Methods: Numerical solutions of linear and non-linear algebraic equations,						
		Integration by trapezoidal and Simpson's rule, single and multi-step methods for						
		differential equations.						
тт	CEN	IEDALENCINEEDINC						
11	(1)	ENAL ENGINEERING Engineering Materials: Structure and properties correlation: engineering materials						
	(1)	(metals ceramics polymers and composite) properties and applications: stress strain						
		(incluss, certaines, polymers and composite) - properties and applications. Successful and behavior of metals and allows: iron-carbon phase diagram, heat treatment of metals and						
		alloves its influence on mechanical properties						
	(2)	Applied Mechanics: Engineering mechanics - equivalent force systems free body						
	(2)	concepts equations of equilibrium: trusses: strength of materials - stress strain and their						
		relationship: failure theories Mohr's circle (stress) deflection of heams bending and shear						
		stress. Euler's theory of columns.						
	(3)	Theory of Machines and Design: Analysis of planar mechanisms, cams and followers:						
		governors and fly wheels: design of bolted, riveted and welded joints: interference/shrink						
		fit joints; design of shafts, keys, spur gears, belt drives, brakes and clutches: pressure						
		vessels.						

-: Syllabus :-

	(4)	Thermal and Fluids Engineering : Fluid mechanics – fluid statics, Bernoulli's equation,			
		flow through pipes, equations of continuity and momentum, capillary action, contact angle			
		and wetting; thermodynamics - zeroth, first and second law of thermodynamics,			
		thermodynamic system and processes, calculation of work and heat for system and control			
		volumes; air standard cycles; heat transfer – basic application of conduction, convection			
		and radiation.			
ш	MA	NUFACTURING PROCESSES - I			
- 111	(1)	Casting: Types of casting processes and applications: patterns – types and materials:			
	(1)	allowances: moulds and cores – materials making and testing casting techniques of cast			
		iron, steels and nonferrous metals and alloys: analysis of solidification and microstructure			
		development: design of gating and riser: origin of defects.			
	(2)	Metal Forming: Stress-strain relations in elastic and plastic deformation; concept of flow			
		stress; hot and cold working – forging, rolling, extrusion and wire drawing; sheet metal			
		working processes -blanking, bending and deep drawing, ideal work and slab analysis;			
		origin of metal working defects.			
	(3)	Joining of materials: Principles of fusion welding processes (manual metal arc, MIG,			
		TIG, Plasma arc, submerged arc welding processes) - different heat sources (flame, arc,			
		resistive, laser, electron beam), and heat transfer and associated losses, flux application,			
		feeding or filler rod, Principles of solid state welding processes (friction, explosive			
		welding, ultra sonic welding processes); Principles of adhesive, brazing and soldering			
		processes; Origins of welding defects.			
	(4)	Powder Processing: Production of metal/ceramic powders, compaction and sintering of			
		metals and ceramic powders.			
	(5)	Polymers and Composites: Plastic processing – injection, compression and blow			
		molding, extrusion, calendaring and thermoforming; molding of composites.			
IV	MA	NUFACTURING PROCESSES-II			
	(1)	Machine Tools and Machining: Basic machine tools like centre lathe, milling machine,			
		and drilling machine – construction and kinematics; machining processes – turning, taper			
		turning, thread cutting, drilling, boring, milling, gear cutting, thread production, grinding;			
		geometry of single point cutting tools, chip formation, cutting forces, specific cutting			
		parameters: tools materials, tool wear and tool life economics of machining thermal			
		aspects of machining cutting fluids machine ability. Jigs and fixtures – principles			
		applications and design			
	(2)	Non-traditional Manufacturing: Principles, applications, effect of process parameters			
	(-)	on MRR and product quality of non-traditional machining processes- USM, AJM, WJM,			
		AWJM, EDM and Wire cut EDM, LBM, EBM, PAM, CHM, ECM.			
	(3)	Computer Integrated Manufacturing: Basic concepts of CAD - geometric modeling,			
		CAM - CNC and robotics - configurations, drives and controls, Group Technology and			
		its applications – CAPP, cellular manufacturing and FMS.			
V	QUA	ALITYAND RELIABILITY			
	(1)	Metrology and Inspection: Limits, fits, and tolerances, gauge design, interchangeability,			
		selective assembly; linear, angular, and form measurements (straightness, squareness,			
		flatness, roundness, and cylindricity) by mechanical and optical methods; inspection of			
		screw threads and gears; surface finish measurement by contact and non-contact methods;			
	(-)	tolerance analysis in manufacturing and assembly.			
	(2)	Quality management: Quality – concept and costs; quality assurance; statistical quality			
		control, acceptance sampling, zero defects, six sigma; total quality management; ISO			
	(3)	Reliability and Maintenance: Reliability, availability and maintainability; distribution of failure and manin times, determination of MTDE and MTTD, reliability, models.			
		failure and repair times; determination of MIBF and MIIR, reliability models;			
X7T	INID	usernination of system renaonity; preventive maintenance and replacement.			
V I		UDINIAL EINGUNEEKUNG Droduct Design and Development: Dringinlag of good product design televorge designs			
	(1)	ulaity and cost considerations: product life cycle: standardization simplification			
		quarty and cost considerations, product me cycle, standardization, simplification, diversification value engineering and analysis concurrent engineering; comparison of			
		production alternatives			
L					

	(2)	 Work System Design: Taylor's scientific management, Gilbreths's contributions; productivity – concepts and measurements; method study, micro-motion study, principles of motion economy; work measurement – time study, work sampling, standard data, PMTS; ergonomics; job evaluation, merit rating, incentive schemes, and wage administration. Facility Design : Facility location factors and evaluation of alternate locations; types of plant layout and their evaluation; computer aided layout design techniques; assembly line 			
		balancing; materials handling systems.			
VII	OPE	ERATIONS RESEARCH AND OPERATIONS MANAGEMENT			
	(1)	Operation Research: Linear programming – problem formulation, simplex method, duality and sensitivity analysis; transportation and assignment models; network flow models, constrained optimization and Lagrange multipliers; Markovian queuing models; dynamic programming simulation – manufacturing applications.			
	(2)	Engineering Economy and costing: Elementary cost accounting method of depreciation; break-even analysis, techniques for evaluation of capital investments, financial statement, time-cost trade-off, resource leveling.			
	(3)	Production Control: Forecasting technique – causal and time series models, moving average, exponential smoothing, trend and seasonality; aggregate production planning; master production scheduling; MRP and MRP-II; routing, scheduling and priority dispatching; push and pull production system, concept of JIT manufacturing system; logistic distribution and supply chain management inventory – functions, cost classifications, deterministic inventory models, quantity discount; perpetual and periodic inventory control system.			
	(4)	Project Management – PERT and CPM			

Date - 22/8/2017

Under Secretary M.P.S.C.